Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 34(4): 619-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24298018

ABSTRACT

We have previously shown that activation of Gαi2, an α subunit of the heterotrimeric G protein complex, induces skeletal muscle hypertrophy and myoblast differentiation. To determine whether Gαi2 is required for skeletal muscle growth or regeneration, Gαi2-null mice were analyzed. Gαi2 knockout mice display decreased lean body mass, reduced muscle size, and impaired skeletal muscle regeneration after cardiotoxin-induced injury. Short hairpin RNA (shRNA)-mediated knockdown of Gαi2 in satellite cells (SCs) leads to defective satellite cell proliferation, fusion, and differentiation ex vivo. The impaired differentiation is consistent with the observation that the myogenic regulatory factors MyoD and Myf5 are downregulated upon knockdown of Gαi2. Interestingly, the expression of microRNA 1 (miR-1), miR-27b, and miR-206, three microRNAs that have been shown to regulate SC proliferation and differentiation, is increased by a constitutively active mutant of Gαi2 [Gαi2(Q205L)] and counterregulated by Gαi2 knockdown. As for the mechanism, this study demonstrates that Gαi2(Q205L) regulates satellite cell differentiation into myotubes in a protein kinase C (PKC)- and histone deacetylase (HDAC)-dependent manner.


Subject(s)
Cell Differentiation/genetics , Cell Proliferation , GTP-Binding Protein alpha Subunit, Gi2/genetics , Muscle Development/genetics , Muscle, Skeletal/metabolism , Regeneration/genetics , Satellite Cells, Skeletal Muscle/metabolism , Animals , Cell Differentiation/physiology , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Development/physiology , Muscle, Skeletal/cytology , Myoblasts/cytology , Myoblasts/metabolism , Satellite Cells, Skeletal Muscle/pathology , Signal Transduction/genetics , Signal Transduction/physiology
2.
Mol Cell Biol ; 32(14): 2871-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22586266

ABSTRACT

Brown adipose tissue (BAT) is a key tissue for energy expenditure via fat and glucose oxidation for thermogenesis. In this study, we demonstrate that the myostatin/activin receptor IIB (ActRIIB) pathway, which serves as an important negative regulator of muscle growth, is also a negative regulator of brown adipocyte differentiation. In parallel to the anticipated hypertrophy of skeletal muscle, the pharmacological inhibition of ActRIIB in mice, using a neutralizing antibody, increases the amount of BAT without directly affecting white adipose tissue. Mechanistically, inhibition of ActRIIB inhibits Smad3 signaling and activates the expression of myoglobin and PGC-1 coregulators in brown adipocytes. Consequently, ActRIIB blockade in brown adipose tissue enhances mitochondrial function and uncoupled respiration, translating into beneficial functional consequences, including enhanced cold tolerance and increased energy expenditure. Importantly, ActRIIB inhibition enhanced energy expenditure only at ambient temperature or in the cold and not at thermoneutrality, where nonshivering thermogenesis is minimal, strongly suggesting that brown fat activation plays a prominent role in the metabolic actions of ActRIIB inhibition.


Subject(s)
Activin Receptors, Type II/antagonists & inhibitors , Adipogenesis/physiology , Adipose Tissue, Brown/metabolism , Thermogenesis/physiology , Activin Receptors, Type II/immunology , Activin Receptors, Type II/metabolism , Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/ultrastructure , Animals , Antibodies, Neutralizing , Cell Differentiation , Energy Metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Microscopy, Electron, Transmission , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Myostatin/metabolism , Signal Transduction , Smad3 Protein/metabolism , Transcription Factors/metabolism
3.
Sci Signal ; 4(201): ra80, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22126963

ABSTRACT

Skeletal muscle atrophy results in loss of strength and an increased risk of mortality. We found that lysophosphatidic acid, which activates a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, stimulated skeletal muscle hypertrophy through activation of Gα(i2). Expression of a constitutively active mutant of Gα(i2) stimulated myotube growth and differentiation, effects that required the transcription factor NFAT (nuclear factor of activated T cells) and protein kinase C. In addition, expression of the constitutively active Gα(i2) mutant inhibited atrophy caused by the cachectic cytokine TNFα (tumor necrosis factor-α) by blocking an increase in the abundance of the mRNA encoding the E3 ubiquitin ligase MuRF1 (muscle ring finger 1). Gα(i2) activation also enhanced muscle regeneration and caused a switch to oxidative fibers. Our study thus identifies a pathway that promotes skeletal muscle hypertrophy and differentiation and demonstrates that Gα(i2)-induced signaling can act as a counterbalance to MuRF1-mediated atrophy, indicating that receptors that act through Gα(i2) might represent potential targets for preventing skeletal muscle wasting.


Subject(s)
Cell Differentiation , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Myoblasts, Skeletal/enzymology , Regeneration , Signal Transduction , Animals , Enzyme Activation/genetics , GTP-Binding Protein alpha Subunits, G12-G13/genetics , HEK293 Cells , Humans , Hypertrophy/enzymology , Hypertrophy/genetics , Hypertrophy/pathology , Mice , Mice, Transgenic , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscular Atrophy/enzymology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Mutation , Myoblasts, Skeletal/pathology , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Tripartite Motif Proteins , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...