Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29997326

ABSTRACT

Insecticides, such as pyrethroids, have frequently been detected in runoff from urban areas, and their offsite transport can cause aquatic toxicity in urban streams and estuaries. To better understand the wash-off process of pesticide residues in urban runoff, the association of pyrethroids with sediment in runoff from residential surfaces was investigated in two watersheds located in Northern California (Sacramento County). Rainfall, flow rate, and event mean concentrations/loads of sediments and pyrethroids, collected during seasonal monitoring campaigns from 2007 to 2014, were analyzed to identify relationships among stormwater quality and rainfall characteristics, primarily using Principal Component Analysis (PCA). Pyrethroid wash-off was strongly related to sediment wash-off whenever sediment loads exceeded 10 mg; this value was conveniently selected as a threshold between dissolved and particle-bound control of off-site pyrethroid transport. A new mechanistic model for predicting pyrethroid wash-off profiles from residential surfaces at basin-scale was implemented in the Storm Water Management Model (SWMM). The accuracy of the model predictions was estimated by evaluating the root mean square error (RMSE), Nash⁻Sutcliff efficiency (NSE), and Kling⁻Gupta efficiency (KGE) for each pyrethroid detected (RMSEtot = 0.13; NSEtot = 0.28; KGEtot = 0.56). The importance of particle-bound transport revealed in this work confirms previous field investigations at a smaller scale, and it should be a key consideration when developing policies to mitigate pesticide runoff from urban areas.


Subject(s)
Environmental Monitoring , Insecticides/analysis , Pesticide Residues/analysis , Rain , Water Pollutants, Chemical/analysis , California , Cities , Environmental Monitoring/methods
2.
J Contam Hydrol ; 112(1-4): 103-17, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20015573

ABSTRACT

A quasi-two-dimensional model is presented for simulating transport and transformation of contaminant species in river waters and sediments, taking into account the effect of both biotic and abiotic geochemical reactions on the contaminant fate and mobility. The model considers the downstream transport of dissolved and sediment-associated species, and the mass transfer with bed sediments due to erosion and resuspension, using linked advection-dispersion-reaction equations. The model also couples both equations to the reactive transport within bed sediment phases. This is done by the use of a set of vertical one-dimensional columns representing sediment layers that take into account the reactive transport of chemicals, burial, sorption/desorption to/from the solid phase, and the diffusive transport of aqueous species. Kinetically-controlled reversible solid-water mass exchange models are adopted to simulate interactions between suspended sediments and bulk water, as well as the mass exchange between bed sediments and pore water. An innovative multi-time step approach is used to model the fully kinetic nonlinear reaction terms using a non-iterative explicit method. This approach enables the model to handle fast and near-equilibrium reactions without a significant increase in computational burden. At the end, two demonstration cases are simulated using the model, including transport of a sorbing, non-reactive trace metal and nitrogen cycling, both in the Colusa Basin Drain in the Central Valley of California.


Subject(s)
Geologic Sediments/chemistry , Models, Biological , Models, Chemical , Rivers/chemistry , Water Pollutants/chemistry , California , Mercury/chemistry , Nitrogen/metabolism
3.
Phys Rev Lett ; 95(1): 014501, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-16090620

ABSTRACT

In many applications a sustained, localized turbulent flow scours a cohesionless granular bed to form a pothole. Here we use similarity methods to derive a theoretical formula for the equilibrium depth of the pothole. Whereas the empirical formulas customarily used in applications contain numerous free exponents, the theoretical formula contains a single one, which we show can be determined via the phenomenological theory of turbulence. Our derivation affords insight into how a state of dynamic equilibrium is attained between a granular bed and a localized turbulent flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...