Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 69: 104974, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32828807

ABSTRACT

Precision-cut intestinal slices (PCIS) are used to study intestinal (patho)physiology, drug efficacy, toxicity, transport and metabolism ex vivo. One of the factors that limit the use of PCIS is a relatively short life-span. Moreover, culture-induced changes in cellular composition of PCIS remain largely uncharacterized. In this study, we demonstrated the epithelial cell heterogeneity in mouse and rat PCIS and its alterations during culture. In addition, we evaluated whether the presence of niche growth factors impacts the survival of PCIS epithelial cells. We showed that freshly prepared PCIS retained the main epithelial cell types, namely absorptive enterocytes, goblet cells, enteroendocrine cells, stem cells, transit-amplifying cells and Paneth cells. Once placed in culture, PCIS displayed progressive epithelial damage, and loss of these epithelial cell types. Cells comprising the intestinal stem cell niche were especially sensitive to the damage, and the addition of niche growth factors beneficially affected the survival of stem cells and transit-amplifying cells in PCIS during culture. In conclusion, this study provides new insights into the dynamic changes in cellular composition of epithelium in cultured PCIS, paving the way to future toxicological and pharmacological studies in an informed and reliable ex vivo setting.


Subject(s)
Epithelial Cells/cytology , Intestinal Mucosa/cytology , Tissue Culture Techniques , Animals , Cell Survival/drug effects , Culture Media , Epithelial Cells/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Male , Mice, Inbred C57BL , Rats, Wistar
2.
Toxicol In Vitro ; 59: 312-321, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31158490

ABSTRACT

Precision-cut intestinal slices (PCIS) is an ex vivo culture technique that found its applications in toxicology, drug transport and drug metabolism testing, as well as in fibrosis research. The main limiting factor of PCIS as experimental model is the relatively short viability of tissue slices. Here, we describe a strategy for extending the life-span of PCIS during culture using medium that is routinely used for growing intestinal organoids. Mouse and rat PCIS cultured in standard medium progressively showed low ATP/protein content and severe tissue degradation, indicating loss of tissue viability. In turn, organoid medium, containing epithelial growth factor (EGF), Noggin and R-spondin, maintained significantly higher ATP/protein levels and better preserved intestinal architecture of mouse PCIS at 96 h. In contrast, organoid medium that additionally contained Wnt, had a clear positive effect on the ATP content of rat PCIS during 24 h of culture, but not on slice histomorphology. Our proof-of-concept study provides early evidence that employing organoid medium for PCIS culture improved tissue viability during extended incubation. Enabling lasting PCIS cultures will greatly widen their range of applications in predicting long-term intestinal toxicity of xenobiotics and elucidating their mechanism of action, among others.


Subject(s)
Intestines , Tissue Culture Techniques , Adenosine Triphosphate , Animals , Carrier Proteins/pharmacology , Culture Media, Conditioned/pharmacology , Epidermal Growth Factor/pharmacology , Male , Mice, Inbred C57BL , Rats, Wistar , Stem Cell Niche , Thrombospondins/genetics , Wnt3A Protein/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...