Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 52: 116526, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34839157

ABSTRACT

The HIV-1 invasion is initiated with the interaction of viral glycoprotein gp120 and cellular receptor CD4. The binding mechanism reveals two major hotspots involved in gp120-CD4 interaction. The first one is a hydrophobic cavity (Phe43 cavity) on gp120 capped with phenyl ring of phe43CD4 and the second is the electrostatic interaction between positive charge of Arg59CD4 and negative charge of Asp368gp120. Targeting these hotspots, small molecules for entry inhibition and HIV-1 neutralization were designed and tested. In the process, pyrimidine derivatives were identified as potent molecules to intercept gp120-CD4 binding by targeting both the hotspots. Herein, the synthesis, characterization of 1,2,3,4-Tetrahydropyrimidine derivatives, and biological evaluation on 93IN101, a clade C virus are presented. The paper presents a novel set of entry inhibitors to target dual hotspots on gp120 to inhibit protein-protein interactions.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Design , HIV Fusion Inhibitors/pharmacology , HIV-1/drug effects , Pyrimidinones/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Dose-Response Relationship, Drug , HIV Envelope Protein gp120 , HIV Fusion Inhibitors/chemical synthesis , HIV Fusion Inhibitors/chemistry , HIV-1/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Structure-Activity Relationship
2.
Bioorg Chem ; 116: 105313, 2021 11.
Article in English | MEDLINE | ID: mdl-34517280

ABSTRACT

The third variable loop region (V3 loop) on gp120 plays an important role in cellular entry of HIV-1. Its interaction with the cellular CD4 and coreceptors is an important hallmark in facilitating the bridging by gp41 and subsequent fusion of membranes for transfer of viral genetic material. Further, the virus phenotype determines the cell tropism via respective co- receptor binding. Thus, coreceptor binding motif of envelope is considered to be a potent anti-viral drug target for viral entry inhibition. However, its high variability in sequence is the major hurdle for developing inhibitors targeting the region. In this study, we have used an in silico Virtual Screening and "Fragment-based" method to design small molecules based on the gp120 V3 loop interactions with a potent broadly neutralizing human monoclonal antibody, 447-52D. From the in silico analysis a potent scaffold, 1,3,5-triazine was identified for further development. Derivatives of 1,3,5-triazine with specific functional groups were designed and synthesized keeping the interaction with co-receptor intact. Finally, preliminary evaluation of molecules for HIV-1 inhibition on two different virus strains (clade C, clade B) yielded IC50 < 5.0 µM. The approach used to design molecules based on broadly neutralizing antibody, was useful for development of target specific potent antiviral agents to prevent HIV entry. The study reported promising inhibitors that could be further developed and studied.


Subject(s)
Anti-HIV Agents/pharmacology , Broadly Neutralizing Antibodies/pharmacology , Drug Design , HIV Envelope Protein gp120/antagonists & inhibitors , HIV-1/drug effects , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Broadly Neutralizing Antibodies/chemistry , Dose-Response Relationship, Drug , HIV Envelope Protein gp120/metabolism , HIV-1/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
3.
Colloids Surf B Biointerfaces ; 191: 110979, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32276212

ABSTRACT

Intriguing properties and structural dynamics of Lactoferrin have been exploited in numerous applications, including its use as self-assembling, pH sensitive nanoparticles to deliver intended cargo at the disease site. In this study, we explore the possibility of surface modification of Lactoferrin nanoparticles to hone its specificity to target HIV-1 infected cells. Existence of free cysteine groups on Lactoferrin nanoparticles available for reaction with external molecules facilitates conjugation on the surface with Sodium 2-mercaptoethanesulfonate (MES). Conjugation with MES is used to edge a negative charge that can mimic CCR5 and Heparan sulfate (initial point of contact of HIV-1 env to host cell surface) electrostatic charge (Sulfate group). A simple sono-chemical irradiation method was employed for self-assembly of Nanoparticles and for surface modification. The nanoparticles serve dual purpose to abrogate extracellular entry and to target viral enzymes, when loaded with ART drugs. The morphology and size distribution of the formed particles were explored using Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM) and Dynamic Light Scattering. Raman SERS was employed to understand the difference in the protein upon surface modification. The anti-HIV property of the particles was confirmed in-vitro. The modified device demonstrated acceptable nanoparticle properties with controlled release and higher effective concentration in the area of infection.


Subject(s)
Anti-Infective Agents/administration & dosage , Drug Carriers/chemistry , HIV Infections/drug therapy , HIV-1/drug effects , Lactoferrin/administration & dosage , Nanoparticles/administration & dosage , Sulfonic Acids/chemistry , Anti-Infective Agents/chemistry , Cells, Cultured , HIV Envelope Protein gp160/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1/metabolism , Humans , Lactoferrin/chemistry , Nanoparticles/chemistry
4.
FEBS J ; 285(20): 3849-3869, 2018 10.
Article in English | MEDLINE | ID: mdl-30120904

ABSTRACT

We characterize Rv0474, a putative transcriptional regulatory protein of Mycobacterium tuberculosis, which is found to function as a copper-responsive transcriptional regulator at toxic levels of copper. It is an autorepressor, but at elevated levels (10-250 µm) of copper ions the repression is relieved resulting in an increase in Rv0474 expression. Copper-bound Rv0474 is recruited to the rpoB promoter leading to its repression resulting in the growth arrest of the bacterium. Mutational analysis showed that the helix-turn-helix and leucine zipper domains of Rv0474 are essential for its binding to Rv0474 and rpoB promoters, respectively. The mechanism of Rv0474-mediated rpoB regulation seems to be operational only in pathogenic mycobacteria that can persist inside the host.


Subject(s)
Bacterial Proteins/genetics , Copper/pharmacology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Bacterial/drug effects , Mycobacterium tuberculosis/metabolism , Transcription Factors/genetics , Amino Acid Sequence , Bacterial Proteins/metabolism , Humans , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Promoter Regions, Genetic , Sequence Homology , THP-1 Cells , Transcription Factors/metabolism , Transcription, Genetic
5.
Future Med Chem ; 9(14): 1597-1609, 2017 09.
Article in English | MEDLINE | ID: mdl-28891315

ABSTRACT

AIM: A structural study of a series of pyridine dicoumarol derivatives with potential activity against a novel Topoisomerase IIß kinase which was identified in the HIV-1 viral lysate, compounds were designed and synthesized based on a 3D-QSAR study. MATERIALS & METHODS: Based on QSAR model we have designed and synthesized a series of pyridine dicoumarol derivatives and characterized by spectral studies, all the molecules are biologically evaluated by kinase assay, cytotoxicity assay, ELISA and PCR method. RESULT: We demonstrated the achievement of water soluble disodium pyridine dicoumarate derivatives showing high anti-HIV-1 activity (IC50 <25 nM) which provides a crucial point for further development of pyridine dicoumarol series as HIV-1-associated topoisomerase IIß kinase inhibitors for clinical application against AIDS. CONCLUSION: A new class of anti-HIV-1 lead compounds have been designed and tested. Further studies would result in development of  novel and potential drugs.


Subject(s)
DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Dicumarol/metabolism , HIV-1/enzymology , Topoisomerase II Inhibitors/metabolism , Anti-HIV Agents/chemistry , Anti-HIV Agents/metabolism , Anti-HIV Agents/toxicity , Cell Line , Cell Survival/drug effects , DNA-Binding Proteins/antagonists & inhibitors , Dicumarol/chemistry , Dicumarol/pharmacology , Drug Design , Enzyme-Linked Immunosorbent Assay , HIV Core Protein p24/antagonists & inhibitors , HIV Core Protein p24/metabolism , HIV-1/drug effects , Humans , Pyridines/chemistry , Quantitative Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology
6.
Curr Pharm Des ; 19(26): 4776-86, 2013.
Article in English | MEDLINE | ID: mdl-23260019

ABSTRACT

Viruses have been found to exhibit protein kinase activity associated with their purified viral particles. HIV-1 virus particles possess a novel 72 kD protein, Topoisomerase II beta kinase (Topo IIßKHIV) activity. The enzyme, isolated and purified from PEGprecipitated HIV-1 particles, is insensitive against a diverse set of known kinase inhibitors. The pyridine derivatives were found to be active against both Topo IIßKHIV activity and HIV-1 replication. For both kinase antagonism and anti-HIV-1 activity the Comparative Molecular Field Analysis (CoMFA) models were proposed. The CoMFA model was also evaluated independently with a set of test molecules for their anti-viral activity. The kinase inhibition and anti-viral activities for these inhibitors, tested in an in vitro kinase agree with the CoMFA model (cross-validated r2 (q2) value of 0.642 with six principal components), lower acceptable results are obtained with anti- HIV-1 activity (cross-validated r2 (q2) value of 0.358 with four principal components) and also correlate with relative solvation free energy calculations. The predictive power of the models was evaluated with 2 test molecules each and tends to lie within 1 log unit. An in cell validation of the model with a representative inhibitor, 2-methoxypyridine shows its ability to inhibit Topo IIß phosphorylation during acute HIV-1 infection. Close correlation of molecular fields of inhibitory domains of kinase and HIV-1 inhibitors suggests specificity of action of pyridine derivatives in affecting HIV-1 replication through inhibition of Kinase activity. These investigations suggest that Topo IIßKHIV is a potential target for an effective control of HIV-1 replication that would help in developing new anti-retroviral molecules.


Subject(s)
Anti-HIV Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , HIV-1/enzymology , Virus Replication/drug effects , Catalytic Domain , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/isolation & purification , DNA-Binding Proteins/genetics , DNA-Binding Proteins/isolation & purification , Phosphorylation , Pyridines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...