Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 13295, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30185914

ABSTRACT

We revisit the fundamental problem of liquid-liquid dewetting and perform a detailed comparison of theoretical predictions based on thin-film models with experimental measurements obtained by atomic force microscopy. Specifically, we consider the dewetting of a liquid polystyrene layer from a liquid polymethyl methacrylate layer, where the thicknesses and the viscosities of both layers are similar. Using experimentally determined system parameters like viscosity and surface tension, an excellent agreement of experimentally and theoretically obtained rim profile shapes are obtained including the liquid-liquid interface and even dewetting rates. Our new energetic approach additionally allows to assess the physical importance of different contributions to the energy-dissipation mechanism, for which we analyze the local flow fields and the local dissipation rates. Using this approach, we explain why dewetting rates for liquid-liquid systems follow no universal power law, despite the fact that experimental velocities are almost constant. This is in contrast to dewetting scenarios on solid substrates and in contrast to previous results for liquid-liquid substrates using heuristic approaches.

2.
Langmuir ; 30(37): 11086-95, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25154035

ABSTRACT

In this study, the dynamics of initially stationary liquid drops on smooth and topographic inclined silicon surfaces was investigated experimentally and by lattice Boltzmann simulations. The transient contact angles and the critical angle of inclination were measured systematically for different liquids, drop sizes, and surfaces having different wettability and surface roughness. In general, the critical angle of inclination is larger for hydrophilic than for hydrophobic surfaces, irrespective of the liquids, and increases with increasing contact angle hysteresis and decreasing drop sizes. A two-phase liquid-vapor lattice Boltzmann model based on the Shan and Chen approach was developed for two dimensions which incorporates the wetting and topographic characteristics of the surface. The simulation results matched the experimentally found features quantitatively and allowed one to explore the roll-off behavior even in cases that can hardly be accessed experimentally.


Subject(s)
Models, Chemical , Silicon/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size , Surface Properties , Thermodynamics
3.
Eur Phys J E Soft Matter ; 36(8): 87, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23933987

ABSTRACT

The morphological path of droplets on a liquid substrate towards equilibrium is investigated experimentally and theoretically. The droplets emerge in the late stage of a dewetting process of short chained polystyrene (PS) dewetting from liquid polymethyl-methacrylate (PMMA). The three-dimensional droplet profiles are obtained experimentally by combining the in situ imaged PS/air interface during equilibration and the ex situ imaged PS/PMMA interface after removal of the PS by a selective solvent. Numerically the transient drop shapes are calculated by solving the thin-film equation in lubrication approximation using the experimentally determined input parameter like viscosity, film thickness and surface tensions. The numerically obtained droplet morphologies and time scales agree very well with the experimental drop shapes. An unexpected observation is that droplets with identical volumes synchronise their motion and become independent of the initial geometry long time before equilibrium is reached.


Subject(s)
Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Wettability , Models, Chemical , Surface Tension , Viscosity
4.
J Phys Condens Matter ; 23(18): 184108, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21508471

ABSTRACT

When exposed to a partially wetting liquid, many natural and artificial surfaces equipped with complex topographies display a rich variety of liquid interfacial morphologies. In the present article, we focus on a few simple paradigmatic surface topographies and elaborate on the statics and dynamics of the resulting wetting morphologies. It is demonstrated that the spectrum of wetting morphologies increases with increasing complexity of the groove structure. On elastically deformable substrates, additional structures in the liquid morphologies can be observed, which are caused by deformations of the groove geometry in the presence of capillary forces. The emergence of certain liquid morphologies in grooves can be actively controlled by changes in wettability and geometry. For electrically conducting solid substrates, the apparent contact angle can be varied by electrowetting. This allows, depending on groove geometry, a reversible or irreversible transport of liquid along surface grooves. In the case of irreversible liquid transport in triangular grooves, the dynamics of the emerging instability is sensitive to the apparent hydrodynamic slip at the substrate. On elastic substrates, the geometry can be varied in a straightforward manner by stretching or relaxing the sample. The imbibition velocity in deformable grooves is significantly reduced compared to solid grooves, which is a result of the microscopic deformation of the elastic groove material close to the three phase contact line.


Subject(s)
Solutions/chemistry , Biophysics/methods , Elasticity , Electrochemistry/methods , Materials Testing , Microscopy, Atomic Force/methods , Models, Statistical , Polystyrenes/chemistry , Surface Properties , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...