Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38978394

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a spectrum of heterogeneous malignancies. A variety of genetic, environmental, and lifestyle factors contribute to the development of HNSCC. Carcinogenesis is a multistep process in which cell proliferation-associated oncogenes and cell cycle regulation-associated tumor suppressor genes are dysregulated resulting in premalignant lesions. Immune evasion is a critical step in the progression of benign lesions to advanced cancer. This review discusses the advances that have been made in chemoprevention strategies for HNSCC. The rationale for the use of chemopreventive agents to inhibit head and neck cancer development is highlighted by the positive outcomes of several clinical trials. We discuss the potential of some of the commonly studied agents including vitamin A analogues, EGFR inhibitors, COX-2 inhibitors, metabolic modulators, and natural compounds such as green tea, immunotherapy and photodynamic therapy to prevent HNSCC. Our review provides insight into the potential benefits of these agents and the gaps that remain to be addressed. The published results reaffirm the promise of chemoprevention in head and neck cancer and suggest that continued exploration is needed to overcome the limitations. Since the current focus on chemopreventive agents is limited, major efforts in precision oncology approaches and substantial increase in funding will promote research into chemoprevention which will eventually decrease the incidence of HNSCC.

2.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791429

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive and highly metastatic type of tumor. TNBC is often enriched in tumor-infiltrating neutrophils (TINs), which support cancer growth in part by counteracting tumor-infiltrating lymphocytes (TILs). Prior studies identified the enhancer of zeste homolog 2 (EZH2) as a pro-tumor methyltransferase in primary and metastatic TNBCs. We hypothesized that EZH2 inhibition in TNBC cells per se would exert antitumor activity by altering the tumor immune microenvironment. To test this hypothesis, we used CRISPR to generate EZH2 gene knockout (KO) and overexpressing (OE) lines from parent (wild-type-WT) 4T1 cells, an established murine TNBC model, resulting in EZH2 protein KO and OE, respectively. In vitro, EZH2 KO and OE cells showed early, transient changes in replicative capacity and invasiveness, and marked changes in surface marker profile and cytokine/chemokine secretion compared to WT cells. In vivo, EZH2 KO cells showed significantly reduced primary tumor growth and a 10-fold decrease in lung metastasis compared to WT cells, while EZH2 OE cells were unchanged. Compared to WT tumors, TIN:TIL ratios were greatly reduced in EZH2 KO tumors but unchanged in EZH2 OE tumors. Thus, EZH2 is key to 4T1 aggressiveness as its tumor-intrinsic knockout alters their in vitro secretome and in vivo primary tumor growth, TIN/TIL poise, and metastasis.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Lung Neoplasms , Lymphocytes, Tumor-Infiltrating , Triple Negative Breast Neoplasms , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Animals , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/immunology , Mice , Female , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Tumor Microenvironment/immunology , Cell Proliferation , Humans , Mice, Inbred BALB C , Gene Knockout Techniques , Disease Models, Animal , Gene Expression Regulation, Neoplastic
3.
Front Immunol ; 14: 1154566, 2023.
Article in English | MEDLINE | ID: mdl-37153607

ABSTRACT

In the past decades, advances in the use of adoptive cellular therapy to treat cancer have led to unprecedented responses in patients with relapsed/refractory or late-stage malignancies. However, cellular exhaustion and senescence limit the efficacy of FDA-approved T-cell therapies in patients with hematologic malignancies and the widespread application of this approach in treating patients with solid tumors. Investigators are addressing the current obstacles by focusing on the manufacturing process of effector T cells, including engineering approaches and ex vivo expansion strategies to regulate T-cell differentiation. Here we reviewed the current small-molecule strategies to enhance T-cell expansion, persistence, and functionality during ex vivo manufacturing. We further discussed the synergistic benefits of the dual-targeting approaches and proposed novel vasoactive intestinal peptide receptor antagonists (VIPR-ANT) peptides as emerging candidates to enhance cell-based immunotherapy.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , T-Lymphocytes , Neoplasms/therapy , Immunotherapy , Cell Differentiation
4.
Immun Ageing ; 20(1): 20, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37170231

ABSTRACT

BACKGROUND: Current influenza vaccines deliver satisfactory results in young people but are less effective in the elderly. Development of vaccines for an ever-increasing aging population has been an arduous challenge due to immunosenescence that impairs the immune response in the aged, both quantitatively and qualitatively. RESULTS: To potentially enhance vaccine efficacy in the elderly, we investigated the immunogenicity and cross-protection of influenza hemagglutinin virus-like particles (HA-VLP) incorporated with glycosylphosphatidylinositol (GPI)-anchored cytokine-adjuvants (GPI-GM-CSF and GPI-IL-12) via protein transfer in aged mice. Lung viral replication against homologous and heterologous influenza viruses was significantly reduced in aged mice after vaccination with cytokine incorporated VLPs (HA-VLP-Cyt) in comparison to HA-VLP alone. Enhanced IFN-γ+CD4+ and IFN-γ+CD8+ T cell responses were also observed in aged mice immunized with HA-VLP-Cyt when compared to HA-VLP alone. CONCLUSIONS: Cytokine-adjuvanted influenza HA-VLP vaccine induced enhanced protective response against homologous influenza A virus infection in aged mice. Influenza HA-VLP vaccine with GPI-cytokines also induced enhanced T cell responses correlating with better protection against heterologous infection in the absence of neutralizing antibodies. The results suggest that a vaccination strategy using cytokine-adjuvanted influenza HA-VLPs could be used to enhance protection against influenza A virus in the elderly.

5.
Vaccines (Basel) ; 10(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35746552

ABSTRACT

Several approaches have produced an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since millions of people are exposed to influenza virus and SARS-CoV-2, it is of great interest to develop a two-in-one vaccine that will be able to protect against infection of both viruses. We have developed a hybrid vaccine for SARS-CoV-2 and influenza viruses using influenza virus-like particles (VLP) incorporated by protein transfer with glycosylphosphatidylinositol (GPI)-anchored SARS-CoV-2 RBD fused to GM-CSF as an adjuvant. GPI-RBD-GM-CSF fusion protein was expressed in CHO-S cells, purified and incorporated onto influenza VLPs to develop the hybrid vaccine. Our results show that the hybrid vaccine induced a strong antibody response and protected mice from both influenza virus and mouse-adapted SARS-CoV-2 challenges, with vaccinated mice having significantly lower lung viral titers compared to naive mice. These results suggest that a hybrid vaccine strategy is a promising approach for developing multivalent vaccines to prevent influenza A and SARS-CoV-2 infections.

6.
J Immunother Cancer ; 9(11)2021 11.
Article in English | MEDLINE | ID: mdl-34815353

ABSTRACT

BACKGROUND: PD-L1 is one of the major immune checkpoints which limits the effectiveness of antitumor immunity. Blockade of PD-L1/PD-1 has been a major improvement in the treatment of certain cancers, however, the response rate to checkpoint blockade remains low suggesting a need for new therapies. Metformin has emerged as a potential new drug for the treatment of cancer due to its effects on PD-L1 expression, T cell responses, and the immunosuppressive environment within tumors. While the benefits of metformin in combination with checkpoint blockade have been reported in animal models, little remains known about its effect on other types of immunotherapy. METHODS: Vaccine immunotherapy and metformin were administered to mice inoculated with tumors to investigate the effect of metformin and TMV vaccine on tumor growth, metastasis, PD-L1 expression, immune cell infiltration, and CD8 T cell phenotype. The effect of metformin on IFN-γ induced PD-L1 expression in tumor cells was assessed by flow cytometry, western blot, and RT-qPCR. RESULTS: We observed that tumors that respond to metformin and vaccine immunotherapy combination show a reduction in surface PD-L1 expression compared with tumor models that do not respond to metformin. In vitro assays showed that the effect of metformin on tumor cell PD-L1 expression was mediated in part by AMP-activated protein kinase signaling. Vaccination results in increased T cell infiltration in all tumor models, and this was not further enhanced by metformin. However, we observed an increased number of CD8 T cells expressing PD-1, Ki-67, Tim-3, and CD62L as well as increased effector cytokine production after treatment with metformin and tumor membrane vesicle vaccine. CONCLUSIONS: Our data suggest that metformin can synergize with vaccine immunotherapy to augment the antitumor response through tumor-intrinsic mechanisms and also alter the phenotype and function of CD8 T cells within the tumor, which could provide insights for its use in the clinic.


Subject(s)
Cancer Vaccines/therapeutic use , Hypoglycemic Agents/therapeutic use , Immunotherapy/methods , Metformin/therapeutic use , Animals , B7-H1 Antigen , Cancer Vaccines/pharmacology , Female , Humans , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Mice
7.
PLoS One ; 16(8): e0254125, 2021.
Article in English | MEDLINE | ID: mdl-34411144

ABSTRACT

Imaging techniques based on fluorescence and bioluminescence have been important tools in visualizing tumor progression and studying the effect of drugs and immunotherapies on tumor immune microenvironment in animal models of cancer. However, transgenic expression of foreign proteins may induce immune responses in immunocompetent syngeneic tumor transplant models and augment the efficacy of experimental drugs. In this study, we show that the growth rate of Lewis lung carcinoma (LL/2) tumors was reduced after transduction of tdTomato and luciferase (tdTomato/Luc) compared to the parental cell line. tdTomato/Luc expression by LL/2 cells altered the tumor microenvironment by increasing tumor-infiltrating lymphocytes (TILs) while inhibiting tumor-induced myeloid-derived suppressor cells (MDSCs). Interestingly, tdTomato/Luc expression did not alter the response of LL/2 tumors to anti-PD-1 and anti-CTLA-4 antibodies. These results suggest that the use of tdTomato/Luc-transduced cancer cells to conduct studies in immune competent mice may lead to cell-extrinsic tdTomato/Luc-induced alterations in tumor growth and tumor immune microenvironment that need to be taken into consideration when evaluating the efficacy of anti-cancer drugs and vaccines in immunocompetent animal models.


Subject(s)
Carcinoma, Lewis Lung , Gene Expression , Genes, Reporter/immunology , Luciferases , Luminescent Proteins , Lung Neoplasms , Tumor Microenvironment , Animals , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/immunology , Cell Line, Tumor , Luciferases/genetics , Luciferases/immunology , Luminescent Proteins/genetics , Luminescent Proteins/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mice , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Red Fluorescent Protein
8.
Int J Mol Sci ; 22(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34445092

ABSTRACT

Dendritic cells (DCs) are the most effective antigen presenting cells for the development of T cell responses. The only FDA approved DC-based immunotherapy to date is Sipuleucel-T, which utilizes a fusion protein to stimulate DCs ex vivo with GM-CSF and simultaneously deliver the antigen PAP for prostate cancer. This approach is restricted by the breadth of immunity elicited to a single antigen, and to cancers that have a defined tumor associated antigen. Other multi-antigen approaches have been restricted by poor efficacy of vaccine adjuvants. We have developed a vaccine platform that consists of autologous DCs pulsed with cytokine-adjuvanted tumor membrane vesicles (TMVs) made from tumor tissue, that encapsulate the antigenic landscape of individual tumors. Here we test the efficacy of DCs pulsed with TMVs incorporated with glycolipid-anchored immunostimulatory molecules (GPI-ISMs) in HER2-positive and triple negative breast cancer murine models. Pulsing of DCs with TMVs containing GPI-ISMs results in superior uptake of vesicles, DC activation and cytokine production. Adaptive transfer of TMV-pulsed DCs to tumor bearing mice results in the inhibition of tumor growth, reduction in lung metastasis, and an increase in immune cell infiltration into the tumors. These observations suggest that DCs pulsed with TMVs containing GPI-GM-CSF and GPI-IL-12 can be further developed to be used as a personalized immunotherapy platform for cancer treatment.


Subject(s)
Antigens, Neoplasm/immunology , Cytokines/immunology , Dendritic Cells/immunology , Receptor, ErbB-2/immunology , Triple Negative Breast Neoplasms/therapy , Adoptive Transfer , Animals , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Cells, Cultured , Female , Humans , Mice , Mice, Inbred BALB C , Receptor, ErbB-2/analysis , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology
9.
Hum Vaccin Immunother ; 16(12): 3184-3193, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32530786

ABSTRACT

Triple-negative breast cancer (TNBC) afflicts women at a younger age than other breast cancers and is associated with a worse clinical outcome. This poor clinical outcome is attributed to a lack of defined targets and patient-to-patient heterogeneity in target antigens and immune responses. To address such heterogeneity, we tested the efficacy of a personalized vaccination approach for the treatment of TNBC using the 4T1 murine TNBC model. We isolated tumor membrane vesicles (TMVs) from homogenized 4T1 tumor tissue and incorporated glycosyl phosphatidylinositol (GPI)-anchored forms of the immunostimulatory B7-1 (CD80) and IL-12 molecules onto these TMVs to make a TMV vaccine. Tumor-bearing mice were then administered with the TMV vaccine either alone or in combination with immune checkpoint inhibitors. We show that TMV-based vaccine immunotherapy in combination with anti-CTLA-4 mAb treatment upregulated immunomodulatory cytokines in the plasma, significantly improved survival, and reduced pulmonary metastasis in mice compared to either therapy alone. The depletion of CD8+ T cells, but not CD4+ T cells, resulted in the loss of efficacy. This suggests that the vaccine acts via tumor-specific CD8+ T cell immunity. These results suggest TMV vaccine immunotherapy as a potential enhancer of immune checkpoint inhibitor therapies for metastatic triple-negative breast cancer.


Subject(s)
Cancer Vaccines , Triple Negative Breast Neoplasms , Animals , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen , Cell Line, Tumor , Humans , Immunotherapy , Interleukin-12 , Mice , Triple Negative Breast Neoplasms/therapy
10.
Vaccines (Basel) ; 8(2)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295135

ABSTRACT

Immune checkpoint inhibitor (ICI) immunotherapy improved the survival of head and neck squamous cell carcinoma (HNSCC) patients. However, more than 80% of the patients are still resistant to this therapy. To test whether the efficacy of ICI therapy can be improved by vaccine-induced immunity, we investigated the efficacy of a tumor membrane-based vaccine immunotherapy in murine models of HNSCC. The tumors, grown subcutaneously, are used to prepare tumor membrane vesicles (TMVs). TMVs are then incorporated with glycolipid-anchored immunostimulatory molecules GPI-B7-1 and GPI-IL-12 by protein transfer to generate the TMV vaccine. This TMV vaccine inhibited tumor growth and improved the survival of mice challenged with SCCVII tumor cells. The tumor-free mice survived for several months, remained tumor-free, and were protected following a secondary tumor cell challenge, suggesting that the TMV vaccine induced an anti-tumor immune memory response. However, no synergy with anti-PD1 mAb was observed in this model. In contrast, the TMV vaccine was effective in inhibiting MOC1 and MOC2 murine oral cancer models and synergized with anti-PD1 mAb in extending the survival of tumor-bearing mice. These observations suggest that tumor tissue based TMV vaccines can be harnessed to develop an effective personalized immunotherapy for HNSCC that can enhance the efficacy of immune checkpoint inhibitors.

11.
Phys Med Biol ; 61(3): N60-9, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26758693

ABSTRACT

The development of colorectal cancer in the azoxymethane-induced mouse model can be observed by using a miniaturized optical coherence tomography (OCT) imaging system. This system is uniquely capable of tracking disease development over time, allowing for the monitoring of morphological changes in the distal colon due to tumor development and the presence of lymphoid aggregates. By using genetically engineered mouse models deficient in Interleukin 6 (IL-6) and Smad family member 3 (Smad3), the role of inflammation on tumor development and the immune system can be elucidated. Smad3 knockout mice develop inflammatory response, wasting, and colitis associated cancer while deficiency of proinflammatory cytokine IL-6 confers resistance to tumorigenesis. We present pilot data showing that the Smad3 knockout group had the highest tumor burden, highest spleen weight, and lowest thymus weight. The IL-6 deficiency in Smad3 knockout mice prevented tumor development, splenomegaly, and thymic atrophy. This finding suggests that agents that inhibit IL-6 (e.g. anti-IL-6 antibody, non-steroidal anti-inflammatory drugs [NSAIDs], etc.) could be used as novel therapeutic agents to prevent disease progression and increase the efficacy of anti-cancer agents. OCT can also be useful for initiating early therapy and assessing the benefit of combination therapy targeting inflammation.


Subject(s)
Adenoma/pathology , Colonic Neoplasms/pathology , Interleukin-6/deficiency , Smad3 Protein/deficiency , Adenoma/etiology , Adenoma/genetics , Animals , Azoxymethane/toxicity , Colonic Neoplasms/etiology , Colonic Neoplasms/genetics , Interleukin-6/genetics , Male , Mice , Smad3 Protein/genetics , Tomography, Optical Coherence/methods
12.
Cancer Growth Metastasis ; 8(Suppl 1): 63-80, 2015.
Article in English | MEDLINE | ID: mdl-26396545

ABSTRACT

Optical coherence tomography (OCT) is a high-resolution, nondestructive imaging modality that enables time-serial assessment of adenoma development in the mouse model of colorectal cancer. In this study, OCT was utilized to evaluate the effectiveness of interventions with the experimental antitumor agent α-difluoromethylornithine (DFMO) and a nonsteroidal anti-inflammatory drug sulindac during early [chemoprevention (CP)] and late stages [chemotherapy (CT)] of colon tumorigenesis. Biological endpoints for drug interventions included OCT-generated tumor number and tumor burden. Immunochistochemistry was used to evaluate biochemical endpoints [Ki-67, cleaved caspase-3, cyclooxygenase (COX)-2, ß-catenin]. K-Ras codon 12 mutations were studied with polymerase chain reaction-based technique. We demonstrated that OCT imaging significantly correlated with histological analysis of both tumor number and tumor burden for all experimental groups (P < 0.0001), but allows more accurate and full characterization of tumor number and burden growth rate because of its time-serial, nondestructive nature. DFMO alone or in combination with sulindac suppressed both the tumor number and tumor burden growth rate in the CP setting because of DFMO-mediated decrease in cell proliferation (Ki-67, P < 0.001) and K-RAS mutations frequency (P = 0.04). In the CT setting, sulindac alone and DFMO/sulindac combination were effective in reducing tumor number, but not tumor burden growth rate. A decrease in COX-2 staining in DFMO/sulindac CT groups (COX-2, P < 0.01) confirmed the treatment effect. Use of nondestructive OCT enabled repeated, quantitative evaluation of tumor number and burden, allowing changes in these parameters to be measured during CP and as a result of CT. In conclusion, OCT is a robust minimally invasive method for monitoring colorectal cancer disease and effectiveness of therapies in mouse models.

13.
Clin Immunol ; 138(3): 321-30, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21256088

ABSTRACT

Calcineurin (CN) is a phosphatase that activates nuclear factor of activated T cells (NFAT). While the CN inhibitors cyclosporine A (CsA) and tacrolimus (FK506) can prevent graft rejection, they also cause inflammatory diseases. We investigated the role of calcineurin using mice deficient in the CN catalytic subunit Aß (CNAß). Cnab(-/-) mice exhibit defective thymocyte maturation, splenomegaly and hepatomegaly. Further, as Cnab(-/-) mice age, they exhibit spontaneous T-cell activation and enhanced production of proinflammatory cytokines (IL-4, IL-6, and IFNγ). FOXP3(+) T(reg) cells were significantly decreased in Cnab(-/-) mice likely contributing to increased T-cell activation. Interestingly, we found that CNAß is critical for promotion of BCL-2 expression in FOXP3(+) T(reg) and for permitting TGFß signaling, as TGFß induces FOXP3 in control but not in Cnab(-/-) T-cells. Together, these data suggest that CNAß is important for the production and maintenance of T(reg) cells and to ensure mature T-cell quiescence.


Subject(s)
Calcineurin/immunology , Homeostasis/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Calcineurin/genetics , Cytokines/biosynthesis , Cytokines/immunology , Forkhead Transcription Factors/immunology , Hepatomegaly/immunology , Hepatomegaly/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Mutant Strains , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Proto-Oncogene Proteins c-bcl-2/immunology , Signal Transduction/immunology , Splenomegaly/immunology , Splenomegaly/metabolism , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/immunology
14.
Genesis ; 47(6): 423-31, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19415629

ABSTRACT

Transforming growth factor beta1 (TGFbeta1) is a multifunctional growth factor involved in wound healing, tissue fibrosis, and in the pathogenesis of many syndromic diseases (e.g., Marfan syndrome, Camurati-Engelmann disease) and muscular, neurological, ophthalmic, cardiovascular and immunological disorders, and cancer. Since the generation of Tgfb1 knockout mice, there has been extraordinary progress in understanding its physiological and pathophysiological function. Here, we report the generation of a conditional knockout allele for Tgfb1 in which its exon 6 is flanked with LoxP sites. As proof of principle, we crossed these mice to LckCre transgenic mice and specifically disrupted Tgfb1 in T cells. The results indicate that T-cell-produced TGFbeta1 is required for normal in vivo regulation of peripheral T-cell activation, maintenance of T-cell homeostasis, and suppression of autoimmunity.


Subject(s)
Exons/genetics , Gene Targeting/methods , T-Lymphocytes/metabolism , Transforming Growth Factor beta1/genetics , Alleles , Animals , Cell Count , Female , Flow Cytometry , Gene Expression Profiling , Homeostasis/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Mice, Transgenic , Mutation , Reverse Transcriptase Polymerase Chain Reaction , Spleen/cytology , Spleen/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/metabolism , Transforming Growth Factor beta1/physiology
15.
Clin Immunol ; 127(2): 206-13, 2008 May.
Article in English | MEDLINE | ID: mdl-18308639

ABSTRACT

TGFbeta1 is considered to be required for peripheral maintenance of CD4(+)CD25(+)FOXP3(+) T(reg) cells. However, we demonstrate no reduction in the percentage of such T cells in the spleens and thymi of Tgfb1(-/-) mice. Although putative T(reg) cells, characterized as CD4(+)CD25(+)FOXP3(+)CD62L(+) T cells, are increased in Tgfb1(-/-) mice, they may be inadequate to control activated T cells since the ratio of activated T cells:putative T(reg) cells is several-fold higher in Tgfb1(-/-) mice than in control mice. We further show that whereas Tgfb1(-/-) mice that express a chicken OVA-specific TCR transgene (DO11.10) have an increase in putative T(reg) cells, there are no detectable CD4(+)CD25(+) T cells in the spleens of DO11.10 Rag1(-/-) mice suggesting that T(reg)-cell generation is self-antigen dependent regardless of whether they express Tgfb1. Finally, we demonstrate that Tgfb1(-/-) T cells remain responsive to the suppressive effect of TGFbeta1 in vitro. These data suggest that TGFbeta1 is required for the regulatory function of T(reg) cells to prevent activation of T cells and autoimmunity.


Subject(s)
Forkhead Transcription Factors/immunology , Immune Tolerance/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta1/immunology , Animals , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Autoimmunity/immunology , Cell Proliferation , Flow Cytometry , L-Selectin/immunology , Lectins, C-Type , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Phenotype , Spleen/cytology , Spleen/immunology , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Thymus Gland/immunology , Transforming Growth Factor beta1/genetics
16.
J Immunol ; 180(3): 1903-12, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18209088

ABSTRACT

Ample evidence suggests a role of TGF-beta in preventing autoimmunity. Multiorgan inflammatory disease, spontaneous activation of self-reactive T cells, and autoantibody production are hallmarks of autoimmune diseases, such as lupus. These features are reminiscent of the immunopathology manifest in TGF-beta1-deficient mice. In this study, we show that lupus-prone (New Zealand Black and White)F(1) mice have reduced expression of TGF-beta1 in lymphoid tissues, and TGF-beta1 or TGF-beta1-producing T cells suppress autoantibody production. In contrast, the expression of TGF-beta1 protein and mRNA and TGF-beta signaling proteins (TGF-beta receptor type II and phosphorylated SMAD3) increases in the target organs, i.e., kidneys, of these mice as they age and develop progressive organ damage. In fact, the levels of TGF-beta1 in kidney tissue and urine correlate with the extent of chronic lesions that represent local tissue fibrosis. In vivo TGF-beta blockade by treatment of these mice with an anti-TGF-beta Ab selectively inhibits chronic fibrotic lesions without affecting autoantibody production and the inflammatory component of tissue injury. Thus, TGF-beta plays a dual, seemingly paradoxical, role in the development of organ damage in multiorgan autoimmune diseases. According to our working model, reduced TGF-beta in immune cells predisposes to immune dysregulation and autoantibody production, which causes tissue inflammation that triggers the production of anti-inflammatory cytokines such as TGF-beta in target organs to counter inflammation. Enhanced TGF-beta in target organs, in turn, can lead to dysregulated tissue repair, progressive fibrogenesis, and eventual end-organ damage.


Subject(s)
Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Kidney/pathology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Transforming Growth Factor beta/physiology , Animals , Autoantibodies/immunology , Autoantibodies/pharmacology , Fibrosis , Kidney/immunology , Lymphoid Tissue/immunology , Mice , Mice, Mutant Strains , Signal Transduction , Transforming Growth Factor beta/analysis , Transforming Growth Factor beta/genetics
17.
Trends Mol Med ; 13(11): 492-501, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17977791

ABSTRACT

Transforming growth factor beta1 (TGFbeta1), an important pleiotropic, immunoregulatory cytokine, uses distinct signaling mechanisms in lymphocytes to affect T-cell homeostasis, regulatory T (Treg)-cell and effector-cell function and tumorigenesis. Defects in TGFbeta1 expression or its signaling in T cells correlate with the onset of several autoimmune diseases. TGFbeta1 prevents abnormal T-cell activation through the modulation of Ca2+-calcineurin signaling in a Caenorhabditis elegans Sma and Drosophila Mad proteins (SMAD)3 and SMAD4-independent manner; however, in Treg cells, its effects are mediated, at least in part, through SMAD signaling. TGFbeta1 also acts as a pro-inflammatory cytokine and induces interleukin (IL)-17-producing pathogenic T-helper cells (Th IL-17 cells) synergistically during an inflammatory response in which IL-6 is produced. Here, we will review TGFbeta1 and its signaling in T cells with an emphasis on the regulatory arm of immune tolerance.


Subject(s)
T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Autoimmune Diseases/metabolism , Autoimmune Diseases/physiopathology , Humans , Models, Biological , Signal Transduction/genetics , Signal Transduction/physiology , Transforming Growth Factor beta1/genetics
18.
Lab Invest ; 86(10): 1008-19, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16865088

ABSTRACT

To investigate whether the multifocal inflammatory disease in TGFbeta1-deficient mice is caused by self-antigen (self-Ag)-specific autoreactive T cells, or whether it is caused by antigen independent, spontaneous hyperactivation of T cells, we have generated Tgfb1(-/-) and Tgfb1(-/-) Rag1(-/-) mice expressing the chicken OVA-specific TCR transgene (DO11.10). On a Rag1-sufficient background, Tgfb1(-/-) DO11.10 mice develop a milder inflammation than do Tgfb1(-/-) mice, and their T cells display a less activated phenotype. The lower level of activation correlates with the expression of hybrid TCR (transgenic TCRbeta and endogenous TCRalpha), which could recognize self-Ag and undergo activation. In the complete absence of self-Ag recognition (Tgfb1(-/-) DO11.10 Rag1(-/-) mice) inflammation and T-cell activation are eliminated, demonstrating that self-Ag recognition is required for the hyper-responsiveness of TGFbeta1-deficient T cells. Thus, TGFbeta1 is required for the prevention of autoimmune disease through its ability to control the activation of autoreactive T cells to self-Ag.


Subject(s)
Autoimmunity/immunology , T-Lymphocytes/immunology , Transforming Growth Factor beta1/immunology , Animals , Autoantigens/immunology , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Knockout , Mice, Transgenic
20.
Cell Immunol ; 232(1-2): 96-104, 2004.
Article in English | MEDLINE | ID: mdl-15922720

ABSTRACT

Transforming growth factor beta1 (TGFbeta1) is a potent negative immunoregulatory molecule. We have previously shown that the autoimmune-mediated weaning-age lethality of Tgfb1-/- mice is reversed upon genetic combination with Scid or Rag null alleles. Here, we show that elimination of T but not B cells is sufficient for the reversal, but elimination of either CD4+ or CD8+ cells is not. Although elimination of B cells does not rescue TGFbeta1-deficient animals from autoimmunity, B cells are hyperresponsive to LPS in the absence of TGFbeta1. TGFbeta1 deficiency leads to activation of CD8+ T cells as suggested by down-modulation of CD8 even in the absence of CD4+ T cells. This study provides evidence that both CD4+ and CD8+ T cells, but not B cells, have the ability to cause inflammation in the absence of TGFbeta1. However, though TGFbeta1-deficient B cells are hyperresponsive to stimulation, alone they are not sufficient to cause inflammation.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Inflammation/immunology , Transforming Growth Factor beta/genetics , Animals , Inflammation/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Phenotype , Spleen/immunology , Survival Rate , Transforming Growth Factor beta/deficiency , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta1
SELECTION OF CITATIONS
SEARCH DETAIL
...