Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
BMC Infect Dis ; 24(1): 360, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549076

ABSTRACT

BACKGROUND: Since the early 1970s, cholera outbreaks have been a major public health burden in the Democratic Republic of Congo (DRC). Cholera cases have been reported in a quasi-continuous manner in certain lakeside areas in the Great Lakes Region. As these cholera-endemic health zones constitute a starting point for outbreaks and diffusion towards other at-risk areas, they play a major role in cholera dynamics in the country. Monitoring the spatiotemporal dynamics of cholera hotspots and adjusting interventions accordingly thus reduces the disease burden in an efficient and cost-effective manner. METHODS: A literature review was conducted to describe the spatiotemporal dynamics of cholera in the DRC at the province level from 1973 to 1999. We then identified and classified cholera hotspots at the provincial and health zone levels from 2003 to 2022 and described the spatiotemporal evolution of hotspots. We also applied and compared three different classification methods to ensure that cholera hotspots are identified and classified according to the DRC context. RESULTS: According to all three methods, high-priority hotspots were concentrated in the eastern Great Lakes Region. Overall, hotspots largely remained unchanged over the course of the study period, although slight improvements were observed in some eastern hotspots, while other non-endemic areas in the west experienced an increase in cholera outbreaks. The Global Task Force on Cholera Control (GTFCC) and the Department of Ecology and Infectious Disease Control (DEIDC) methods largely yielded similar results for the high-risk hotspots. However, the medium-priority hotspots identified by the GTFCC method were further sub-classified by the DEIDC method, thereby providing a more detailed ranking for priority targeting. CONCLUSIONS: Overall, the findings of this comprehensive study shed light on the dynamics of cholera hotspots in the DRC from 1973 to 2022. These results may serve as an evidence-based foundation for public health officials and policymakers to improve the implementation of the Multisectoral Cholera Elimination Plan, guiding targeted interventions and resource allocation to mitigate the impact of cholera in vulnerable communities.


Subject(s)
Cholera , Humans , Cholera/epidemiology , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Public Health
2.
Microbiol Resour Announc ; 13(3): e0082723, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38345380

ABSTRACT

Vibrio cholerae has caused seven cholera pandemics in the past two centuries. The seventh and ongoing pandemic has been particularly severe on the African continent. Here, we report long read-based genome sequences of six V. cholerae strains isolated in the Democratic Republic of the Congo between 2009 and 2012.

3.
Disaster Med Public Health Prep ; 17: e489, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37702057

ABSTRACT

OBJECTIVE: This study describes the progress that the World Health Organization (WHO) African (AFRO) region has made in establishing National Emergency Medical Teams (N-EMTs), the coordination mechanisms of the EMTs, and the regional training centers. METHODS: It used a retrospective descriptive analysis of the formulation and implementation of the EMTs Initiative from an insider perspective. The analysis is based on the review of available documents such as EMTs mission reports, assessments, surveys, EMT monthly bulletins, and meeting minutes in addition to key informant interviews (n = 5) with the EMT teams' members to validate the findings and share field experiences. RESULTS: The emergence of coronavirus disease 2019 (COVID-19) acted as an accelerator for the implementation of the EMT initiative in the AFRO region. A total of 18 EMT deployments were carried out in 16 countries in the AFRO region through the WHO EMT-network during COVID-19, providing support to countries in managing severe and critical COVID-19 cases. CONCLUSIONS: A Regional Training Center for N-EMTs is being set up in Addis Ababa to train the N-EMTs and strengthen local capacity of health personnel in the region. Challenges include unavailability of mentors to support countries in implementing N-EMTs and the Regional Simulation Training Center, poor funding, and coordination in the rolling out of the N-EMTs.


Subject(s)
COVID-19 , Simulation Training , Humans , Retrospective Studies , COVID-19/epidemiology , Ethiopia , Health Personnel
4.
BMC Public Health ; 23(1): 1592, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608355

ABSTRACT

BACKGROUND: The Democratic Republic of the Congo (DRC) implemented the first strategic Multisectoral Cholera Elimination Plan (MCEP) in 2008-2012. Two subsequent MCEPs have since been implemented covering the periods 2013-2017 and 2018-2021. The current study aimed to assess the spatiotemporal dynamics of cholera over the recent 22-year period to determine the impact of the MCEPs on cholera epidemics, establish lessons learned and provide an evidence-based foundation to improve the implementation of the next MCEP (2023-2027). METHODS: In this cross-sectional study, secondary weekly epidemiological cholera data covering the 2000-2021 period was extracted from the DRC Ministry of Health surveillance databases. The data series was divided into four periods: pre-MCEP 2003-2007 (pre-MCEP), first MCEP (MCEP-1), second MCEP (MCEP-2) and third MCEP (MCEP-3). For each period, we assessed the overall cholera profiles and seasonal patterns. We analyzed the spatial dynamics and identified cholera risk clusters at the province level. We also assessed the evolution of cholera sanctuary zones identified during each period. RESULTS: During the 2000-2021 period, the DRC recorded 520,024 suspected cases and 12,561 deaths. The endemic provinces remain the most affected with more than 75% of cases, five of the six endemic provinces were identified as risk clusters during each MCEP period (North Kivu, South Kivu, Tanganyika, Haut-Lomami and Haut-Katanga). Several health zones were identified as cholera sanctuary zones during the study period: 14 health zones during MCEP-1, 14 health zones during MCEP-2 and 29 health zones during MCEP-3. Over the course of the study period, seasonal cholera patterns remained constant, with one peak during the dry season and one peak during the rainy season. CONCLUSION: Despite the implementation of three MCEPs, the cholera context in the DRC remains largely unchanged since the pre-MCEP period. To better orient cholera elimination activities, the method used to classify priority health zones should be optimized by analyzing epidemiological; water, sanitation and hygiene; socio-economic; environmental and health indicators at the local level. Improvements should also be made regarding the implementation of the MCEP, reporting of funded activities and surveillance of cholera cases. Additional studies should aim to identify specific bottlenecks and gaps in the coordination and strategic efforts of cholera elimination interventions at the local, national and international levels.


Subject(s)
Cholera , Humans , Cholera/epidemiology , Cholera/prevention & control , Cross-Sectional Studies , Databases, Factual , Democratic Republic of the Congo/epidemiology
5.
PLoS Negl Trop Dis ; 17(8): e0011597, 2023 08.
Article in English | MEDLINE | ID: mdl-37639440

ABSTRACT

BACKGROUND: The dynamics of the spread of cholera epidemics in the Democratic Republic of the Congo (DRC), from east to west and within western DRC, have been extensively studied. However, the drivers of these spread processes remain unclear. We therefore sought to better understand the factors associated with these spread dynamics and their potential underlying mechanisms. METHODS: In this eco-epidemiological study, we focused on the spread processes of cholera epidemics originating from the shores of Lake Kivu, involving the areas bordering Lake Kivu, the areas surrounding the lake areas, and the areas out of endemic eastern DRC (eastern and western non-endemic provinces). Over the period 2000-2018, we collected data on suspected cholera cases, and a set of several variables including types of conflicts, the number of internally displaced persons (IDPs), population density, transportation network density, and accessibility indicators. Using multivariate ordinal logistic regression models, we identified factors associated with the spread of cholera outside the endemic eastern DRC. We performed multivariate Vector Auto Regressive models to analyze potential underlying mechanisms involving the factors associated with these spread dynamics. Finally, we classified the affected health zones using hierarchical ascendant classification based on principal component analysis (PCA). FINDINGS: The increase in the number of suspected cholera cases, the exacerbation of conflict events, and the number of IDPs in eastern endemic areas were associated with an increased risk of cholera spreading outside the endemic eastern provinces. We found that the increase in suspected cholera cases was influenced by the increase in battles at lag of 4 weeks, which were influenced by the violence against civilians with a 1-week lag. The violent conflict events influenced the increase in the number of IDPs 4 to 6 weeks later. Other influences and uni- or bidirectional causal links were observed between violent and non-violent conflicts, and between conflicts and IDPs. Hierarchical clustering on PCA identified three categories of affected health zones: densely populated urban areas with few but large and longer epidemics; moderately and accessible areas with more but small epidemics; less populated and less accessible areas with more and larger epidemics. CONCLUSION: Our findings argue for monitoring conflict dynamics to predict the risk of geographic expansion of cholera in the DRC. They also suggest areas where interventions should be appropriately focused to build their resilience to the disease.


Subject(s)
Cholera , Epidemics , Humans , Cholera/epidemiology , Democratic Republic of the Congo/epidemiology , Cluster Analysis , Epidemiologic Studies
6.
Pan Afr Med J ; 46: 96, 2023.
Article in English | MEDLINE | ID: mdl-38405090

ABSTRACT

A resurgence in cholera cases has been observed throughout Africa during the first half of 2023. Among the many factors that drive cholera transmission, the ongoing climate phenomenon El Niño is likely to continue until March to May 2024. To prevent further cholera spread, it is critical to strengthen cholera control efforts in Africa.


Subject(s)
Cholera , Humans , Cholera/epidemiology , Cholera/prevention & control , El Nino-Southern Oscillation , Africa/epidemiology , Disease Outbreaks
7.
Pan Afr Med J ; 41(Suppl 2): 9, 2022.
Article in English | MEDLINE | ID: mdl-36159025

ABSTRACT

The paper documents experiences and lesson learned in responding to COVID-19 pandemic in Eswatini with the support of the Emergency Medical Teams. WHO databases, operation reports and hospitalization records were reviewed. The WHO Emergency Medical Teams built the capacity of the local response teams in Eswatini. The conclusion is that following the intervention of the WHO Emergency Medical Teams, Eswatini is better prepared to respond to the ongoing COVID-19 pandemic and future outbreaks.


Subject(s)
COVID-19 , Disease Outbreaks , Eswatini , Humans , Pandemics
8.
Ecohealth ; 19(3): 354-364, 2022 09.
Article in English | MEDLINE | ID: mdl-36029356

ABSTRACT

Monkeypox (MPX) is an emergent severe zoonotic disease resembling that of smallpox. To date, most cases of human MPX have been reported in the Democratic Republic of the Congo (DRC). While the number of cases has increased steadily in the DRC over the last 30 years, the environmental risk factors that drive the spatiotemporal dynamics of MPX transmission remain poorly understood. This study aimed to investigate the spatiotemporal associations between environmental risk factors and annual MPX incidence in the DRC. All MPX cases reported weekly at the health zone level over a 16-year period (2000-2015) were analyzed. A Bayesian hierarchical generalized linear mixed model was conducted to identify the spatiotemporal associations between annual MPX incidence and three types of environmental risk factors illustrating environment as a system resulting from physical, social and cultural interactions Primary forest (IRR 1.034 [1.029-1.040]), economic well-being (IRR 1.038 [1.031-1.047]), and temperature (IRR 1.143 [1.028-1.261]) were positively associated with annual MPX incidence. Our study shows that physical environmental risk factors alone cannot explain the emergence of MPX outbreaks in the DRC. Economic level and cultural practices participate from environment as a whole and thus, must be considered to understand exposure to MPX risk Future studies should examine the impact of these factors in greater detail.


Subject(s)
Mpox (monkeypox) , Animals , Bayes Theorem , Democratic Republic of the Congo/epidemiology , Humans , Mpox (monkeypox)/epidemiology , Monkeypox virus , Zoonoses/epidemiology
9.
PLoS One ; 17(2): e0263160, 2022.
Article in English | MEDLINE | ID: mdl-35130304

ABSTRACT

Cholera is endemic along the Great Lakes Region, in eastern Democratic Republic of the Congo (DRC). From these endemic areas, also under perpetual conflicts, outbreaks spread to other areas. However, the main routes of propagation remain unclear. This research aimed to explore the modalities and likely main routes of geographic spread of cholera from endemic areas in eastern DRC. We used historical reconstruction of major outbreak expansions of cholera since its introduction in eastern DRC, maps of distribution and spatiotemporal cluster detection analyses of cholera data from passive surveillance (2000-2017) to describe the spread dynamics of cholera from eastern DRC. Four modalities of geographic spread and their likely main routes from the source areas of epidemics to other areas were identified: in endemic eastern provinces, and in non-endemic provinces of eastern, central and western DRC. Using non-parametric statistics, we found that the higher the number of conflict events reported in eastern DRC, the greater the geographic spread of cholera across the country. The present study revealed that the dynamics of the spread of cholera follow a fairly well-defined spatial logic and can therefore be predicted.


Subject(s)
Cholera/epidemiology , Cholera/transmission , Democratic Republic of the Congo/epidemiology , Disease Outbreaks/statistics & numerical data , Endemic Diseases/statistics & numerical data , Epidemics/statistics & numerical data , History, 20th Century , History, 21st Century , Humans , Lakes , Morbidity , Mortality , Spatio-Temporal Analysis
10.
Arch Public Health ; 80(1): 18, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34986887

ABSTRACT

BACKGROUND: Overall, 1.8 million children fail to receive the 3-dose series for diphtheria, tetanus and pertussis each year in the Democratic Republic of the Congo (DRC). Currently, an emergency plan targeting 9 provinces including Kinshasa, the capital of the DRC, is launched to reinforce routine immunization. Mont Ngafula II was the only health district that experienced high vaccination dropout rates for nearly five consecutive years. This study aimed to identify factors predicting high immunization dropout rates among children aged 12-23 months in the Mont Ngafula II health district. METHODS: A cross-sectional household survey was conducted among 418 children in June-July 2019 using a two-stage sampling design. Socio-demographic and perception data were collected through a structured interviewer-administered questionnaire. The distribution of 2017-2018 immunization coverage and dropout rate was extracted from the local health district authority and mapped. Logistic random effects regression models were used to identify predictors of high vaccination dropout rates. RESULTS: Of the 14 health areas in the Mont Ngafula II health district, four reported high vaccine coverage, only one recorded low vaccine coverage, and three reported both low vaccine coverage and high dropout rate. In the final multivariate logistic random effects regression model, the predictors of immunization dropout among children aged 12-23 months were: living in rural areas, unavailability of seats, non-compliance with the order of arrival during vaccination in health facilities, and lack of a reminder system on days before the scheduled vaccination. CONCLUSIONS: Our results advocate for prioritizing targeted interventions and programs to strengthen interpersonal communication between immunization service providers and users during vaccination in health facilities and to implement an SMS reminder system on days before the scheduled vaccination.

11.
BMC Infect Dis ; 21(1): 1261, 2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34923959

ABSTRACT

BACKGROUND: Cholera outbreaks in western Democratic Republic of the Congo (DRC) are thought to be primarily the result of westward spread of cases from the Great Lakes Region. However, other patterns of spatial spread in this part of the country should not be excluded. The aim of this study was to explore alternative routes of spatial spread in western DRC. METHODS: A literature review was conducted to reconstruct major outbreak expansions of cholera in western DRC since its introduction in 1973. We also collected data on cholera cases reported at the health zone (HZ) scale by the national surveillance system during 2000-2018. Based on data from routine disease surveillance, we identified two subperiods (week 45, 2012-week 42, 2013 and week 40, 2017-week 52, 2018) for which the retrospective space-time permutation scan statistic was implemented to detect spatiotemporal clusters of cholera cases and then to infer the spread patterns in western DRC other than that described in the literature. RESULTS: Beyond westward and cross-border spread in the West Congo Basin from the Great Lakes Region, other dynamics of cholera epidemic propagation were observed from neighboring countries, such as Angola, to non-endemic provinces of southwestern DRC. Space-time clustering analyses sequentially detected clusters of cholera cases from southwestern DRC to the northern provinces, demonstrating a downstream-to-upstream spread along the Congo River. CONCLUSIONS: The spread of cholera in western DRC is not one-sided. There are other patterns of spatial spread, including a propagation from downstream to upstream areas along the Congo River, to be considered as preferential trajectories of cholera in western DRC.


Subject(s)
Cholera , Epidemics , Cholera/epidemiology , Democratic Republic of the Congo/epidemiology , Humans , Retrospective Studies , Spatio-Temporal Analysis
12.
BMC Infect Dis ; 21(1): 1027, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34592937

ABSTRACT

BACKGROUND: Bacterial meningitis occurs worldwide but Africa remains the most affected continent, especially in the "Meningitis belt" that extends from Senegal to Ethiopia. Three main bacteria are responsible for causing bacterial meningitis, i.e., N. meningitidis (Nm), S. pneumoniae and H. influenzae type b. Among Nm, serogroup A used to be responsible for up to 80 to 85% of meningococcal meningitis cases in Africa. Since 2000, other Nm serogroups including W, X and C have also been responsible for causing epidemics. This overview aims to describe the main patterns of meningitis disease cases and pathogens from 1928 to 2018 in Africa with a special focus on disease conditions "out-of-the-belt" area that is still usually unexplored. Based on basic spatio-temporal methods, and a 90-years database of reported suspected meningitis cases and death from the World Health Organization, we used both geographic information system and spatio-temporal statistics to identify the major localizations of meningitis epidemics over this period in Africa. RESULTS: Bacterial meningitis extends today outside its historical limits of the meningitis belt. Since the introduction of MenAfrivac vaccine in 2010, there has been a dramatic decrease in NmA cases while other pathogen species and Nm variants including NmW, NmC and Streptococcus pneumoniae have become more prevalent reflecting a greater diversity of bacterial strains causing meningitis epidemics in Africa today. CONCLUSION: Bacterial meningitis remains a major public health problem in Africa today. Formerly concentrated in the region of the meningitis belt with Sub-Saharan and Sudanian environmental conditions, the disease extends now outside these historical limits to reach more forested regions in the central parts of the continent. With global environmental changes and massive vaccination targeting a unique serogroup, an epidemiological transition of bacterial meningitis is ongoing, requiring both a better consideration of the etiological nature of the responsible agents and of their proximal and distal determinants.


Subject(s)
Epidemics , Meningitis, Bacterial , Meningitis, Meningococcal , Meningococcal Vaccines , Neisseria meningitidis , Humans , Meningitis, Bacterial/epidemiology , Meningitis, Meningococcal/epidemiology , Senegal
13.
PLoS Negl Trop Dis ; 14(10): e0008634, 2020 10.
Article in English | MEDLINE | ID: mdl-33027266

ABSTRACT

INTRODUCTION: Bacterial meningitis still constitutes an important threat in Africa. In the meningitis belt, a clear seasonal pattern in the incidence of meningococcal disease during the dry season has been previously correlated with several environmental parameters like dust and sand particles as well as the Harmattan winds. In parallel, the evidence of seasonality in meningitis dynamics and its environmental variables remain poorly studied outside the meningitis belt. This study explores several environmental factors associated with meningitis cases in the Democratic Republic of Congo (DRC), central Africa, outside the meningitis belt area. METHODS: Non-parametric Kruskal-Wallis' tests were used to establish the difference between the different health zones, climate and vegetation types in relation to both the number of cases and attack rates for the period 2000-2018. The relationships between the number of meningitis cases for the different health zones and environmental and socio-economical parameters collected were modeled using different generalized linear (GLMs) and generalized linear mixed models (GLMMs), and different error structure in the different models, i.e., Poisson, binomial negative, zero-inflated binomial negative and more elaborated multi-hierarchical zero-inflated binomial negative models, with randomization of certain parameters or factors (health zones, vegetation and climate types). Comparing the different statistical models, the model with the smallest Akaike's information criterion (AIC) were selected as the best ones. 515 different health zones from 26 distinct provinces were considered for the construction of the different GLM and GLMM models. RESULTS: Non-parametric bivariate statistics showed that there were more meningitis cases in urban health zones than in rural conditions (χ2 = 6.910, p-value = 0.009), in areas dominated by savannah landscape than in areas with dense forest or forest in mountainous areas (χ2 = 15.185, p-value = 0.001), and with no significant difference between climate types (χ2 = 1.211, p-value = 0,449). Additionally, no significant difference was observed for attack rate between the two types of heath zones (χ2 = 0.982, p-value = 0.322). Conversely, strong differences in attack rate values were obtained for vegetation types (χ2 = 13.627, p-value = 0,001) and climate types (χ2 = 13.627, p-value = 0,001). This work demonstrates that, all other parameters kept constant, an urban health zone located at high latitude and longitude eastwards, located at low-altitude like in valley ecosystems predominantly covered by savannah biome, with a humid tropical climate are at higher risk for the development of meningitis. In addition, the regions with mean range temperature and a population with a low index of economic well-being (IEW) constitute the perfect conditions for the development of meningitis in DRC. CONCLUSION: In a context of global environmental change, particularly climate change, our findings tend to show that an interplay of different environmental and socio-economic drivers are important to consider in the epidemiology of bacterial meningitis epidemics in DRC. This information is important to help improving meningitis control strategies in a large country located outside of the so-called meningitis belt.


Subject(s)
Climate , Ecosystem , Epidemics/statistics & numerical data , Meningitis, Bacterial/epidemiology , Democratic Republic of the Congo/epidemiology , Haemophilus influenzae/isolation & purification , Humans , Models, Statistical , Neisseria meningitidis/isolation & purification , Seasons , Socioeconomic Factors , Streptococcus pneumoniae/isolation & purification
14.
PLoS Negl Trop Dis ; 14(8): e0008406, 2020 08.
Article in English | MEDLINE | ID: mdl-32776919

ABSTRACT

We hypothesized that Cholera (Vibrio cholerae) that appeared along Lake Kivu in the African Rift in the seventies, might be controlled by volcano-tectonic activity, which, by increasing surface water and groundwater salinity and temperature, may partly rule the water characteristics of Lake Kivu and promote V. cholerae proliferation. Volcanic activity (assessed weekly by the SO2 flux of Nyiragongo volcano plume over the 2007-2012 period) is highly positively correlated with the water conductivity, salinity and temperature of the Kivu lake. Over the 2007-2012 period, these three parameters were highly positively correlated with the temporal dynamics of cholera cases in the Katana health zone that border the lake. Meteorological variables (air temperature and rainfall), and the other water characteristics (namely pH and dissolved oxygen concentration in lake water) were unrelated to cholera dynamics over the same period. Over the 2016-2018 period, we sampled weekly lake water salinity and conductivity, and twice a month vibrio occurrence in lake water and fish. The abundance of V. cholerae in the lake was positively correlated with lake salinity, temperature, and the number of cholera cases in the population of the Katana health zone. V. cholerae abundance in fishes was positively correlated with V. cholerae abundance in lake water, suggesting that their consumption directly contaminate humans. The activity of the volcano, by controlling the physico-chemical characteristics of Lake Kivu, is therefore a major determinant of the presence of the bacillus in the lake. SO2 fluxes in the volcano plume can be used as a tool to predict epidemic risks.


Subject(s)
Cholera/epidemiology , Lakes/chemistry , Lakes/microbiology , Volcanic Eruptions/adverse effects , Animals , Democratic Republic of the Congo/epidemiology , Electric Conductivity , Fishes/microbiology , Humans , Hydrogen-Ion Concentration , Oxygen/analysis , Rwanda , Salinity , Sulfur Dioxide/analysis , Temperature , Vibrio , Water Microbiology
15.
BMC Infect Dis ; 20(1): 291, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32312246

ABSTRACT

BACKGROUND: Bacterial meningitis remains a major threat for the population of the meningitis belt. Between 2004 and 2009, in the countries of this belt, more than 200,000 people were infected with a 10% mortality rate. However, for almost 20 years, important meningitis epidemics are also reported outside this belt. Research is still very poorly developed in this part of the word like in the Democratic Republic of Congo (DRC), which experiences recurrent epidemics. This article describes for the first time the spatio-temporal patterns of meningitis cases and epidemics in DRC, in order to provide new insights for surveillance and control measures. METHODS: Based on weekly suspected cases of meningitis (2000-2012), we used time-series analyses to explore the spatio-temporal dynamics of the disease. We also used both geographic information systems and geostatistics to identify spatial clusters of cases. Both using conventional statistics and the Cleveland's algorithm for decomposition into general trend, seasonal and residuals, we searched for the existence of seasonality. RESULTS: We observed a low rate of biological confirmation of cases (11%) using soluble antigens search, culture and PCR. The main strains found are Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis (A and C) serogroups. We identified 8 distinct spatial clusters, located in the northeastern and southeastern part of DRC, and in the capital city province, Kinshasa. A low seasonal trend was observed with higher incidence and attack rate of meningitis during the dry season, with a high heterogeneity in seasonal patterns occurring across the different districts and regions of DRC. CONCLUSION: Despite challenges related to completeness of data reporting, meningitis dynamics shows weak seasonality in DRC. This tends to suggest that climatic, environmental factors might be less preponderant in shaping seasonal patterns in central Africa. The characterization of 8 distinct clusters of meningitis could be used for a better sentinel meningitis surveillance and optimization of vaccine strategy in DRC. Improving biological monitoring of suspected cases should be a priority for future eco-epidemiological studies to better understand the emergence and spread of meningitis pathogens, and the potential ecological, environmental drivers of this disease.


Subject(s)
Epidemics , Meningitis, Bacterial/epidemiology , Democratic Republic of the Congo/epidemiology , Epidemiological Monitoring , Geographic Information Systems , Haemophilus influenzae/genetics , Haemophilus influenzae/immunology , Haemophilus influenzae/isolation & purification , Humans , Incidence , Meningitis, Bacterial/microbiology , Neisseria meningitidis/genetics , Neisseria meningitidis/immunology , Neisseria meningitidis/isolation & purification , Seasons , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/isolation & purification
16.
BMC Infect Dis ; 20(1): 226, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32183745

ABSTRACT

BACKGROUND: Rapid control of cholera outbreaks is a significant challenge in overpopulated urban areas. During late-2017, Kinshasa, the capital of the Democratic Republic of the Congo, experienced a cholera outbreak that showed potential to spread throughout the city. A novel targeted water and hygiene response strategy was implemented to quickly stem the outbreak. METHODS: We describe the first implementation of the cluster grid response strategy carried out in the community during the cholera outbreak in Kinshasa, in which response activities targeted cholera case clusters using a grid approach. Interventions focused on emergency water supply, household water treatment and safe storage, home disinfection and hygiene promotion. We also performed a preliminary community trial study to assess the temporal pattern of the outbreak before and after response interventions were implemented. Cholera surveillance databases from the Ministry of Health were analyzed to assess the spatiotemporal dynamics of the outbreak using epidemic curves and maps. RESULTS: From January 2017 to November 2018, a total of 1712 suspected cholera cases were reported in Kinshasa. During this period, the most affected health zones included Binza Météo, Limeté, Kokolo, Kintambo and Kingabwa. Following implementation of the response strategy, the weekly cholera case numbers in Binza Météo, Kintambo and Limeté decreased by an average of 57% after 2 weeks and 86% after 4 weeks. The total weekly case numbers throughout Kinshasa Province dropped by 71% 4 weeks after the peak of the outbreak. CONCLUSION: During the 2017-2018 period, Kinshasa experienced a sharp increase in cholera case numbers. To contain the outbreak, water supply and hygiene response interventions targeted case households, nearby neighbors and public areas in case clusters using a grid approach. Following implementation of the response, the outbreak in Kinshasa was quickly brought under control. A similar approach may be adapted to quickly interrupt cholera transmission in other urban settings.


Subject(s)
Cholera/epidemiology , Water Supply/methods , Cholera/prevention & control , Cities , Democratic Republic of the Congo/epidemiology , Disease Outbreaks/prevention & control , Drinking Water/chemistry , Drinking Water/microbiology , Family Characteristics , Female , Humans , Hygiene , Infection Control/methods , Male , Water Purification
18.
Ecohealth ; 16(3): 476-487, 2019 09.
Article in English | MEDLINE | ID: mdl-31410720

ABSTRACT

Monkeypox is a viral disease with a clinical presentation resembling that of smallpox. Although monkeypox is considered to be an important zoonotic viral disease, its epidemiology remains poorly understood, especially the spatial and temporal distribution of the disease. The present study examined weekly reports of monkeypox cases collected from 2000 to 2015 at the health zone scale in the Democratic Republic of Congo. SaTScan® was performed to identify spatial and temporal clusters of monkeypox cases. Significant primary spatial clusters were detected in the districts of Sankuru and Tshuapa. A centrifugal pattern was found, with significant primary spatial clusters extending over time from Sankuru and Tshuapa to several neighboring districts. Peaks of cases occurred from July to September for the 2000-2002 and 2003-2009 sub-periods and from January to March for the 2010-2015 sub-period. Despite the lack of additional data for confirmation, the increasing of monkeypox reported incidence was observed in the Democratic Republic of Congo during 2000-2015 period and this increase cannot be explain only by the improvements of surveillance systems. The detected spatial clusters were located in the dense rainforest of the Congo basin. The reasons for the excess incidence of monkeypox cases in the central region of the country are unknown, and the relative influence of ecological, environmental, and human factors on the mechanism of emergence of monkeypox has yet to be identified.


Subject(s)
Mpox (monkeypox)/epidemiology , Animals , Democratic Republic of the Congo/epidemiology , Humans , Incidence , Paraplegia/epidemiology , Seasons , Spatio-Temporal Analysis , Tetany/epidemiology , Zoonoses
19.
BMC Public Health ; 19(1): 624, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31118016

ABSTRACT

BACKGROUND: The Integrated Disease Surveillance and Response (IDSR) strategy implemented by the World Health Organization (WHO) in Africa has produced a large amount of data on participating countries, and in particular on the Democratic Republic of Congo (DRC). These data are increasingly considered as unevaluable and, therefore, as requiring a rigorous process of validation before they can be used for research or public health purposes. The aim of this study was to propose a method to assess the level of adequacy of IDSR morbidity data in reflecting actual morbidity. METHODS: A systematic search of English- and French-language articles was performed in Scopus, Medline, Science Direct, Springer Link, Cochrane, Cairn, Persée, and Erudit databases. Other types of documents were identified through manual searches. Selected articles focused on the determinants of the discrepancies (differences) between reported morbidity and actual morbidity. An adequacy score was constructed using some of the identified determinants. This score was applied to the 15 weekly reported diseases monitored by IDSR surveillance in the DRC. A classification was established using the Jenks method and a sensitivity analysis was performed. Twenty-three classes of determinants were identified in 35 IDSR technical guides and reports of outbreak investigations and in 71 out of 2254 researched articles. For each of the 15 weekly reported diseases, the SIA was composed of 12 items grouped in 6 dimensions. RESULTS: The SIA classified the 15 weekly reported diseases into 3 categories or types: high score or good adequacy (value > = 14), moderate score or fair adequacy (value > = 8 and < 14), and low score or low or non-adequacy (value < 8). Regardless of the criteria used in the sensitivity analysis, there was no notable variation in SIA values or categories for any of the 15 weekly reported diseases. CONCLUSION: In a context of sparse health information in low- and middle-income countries, this study developed a score to help classify IDSR morbidity data as usable, usable after adjustment, or unusable. This score can serve to prioritize, optimize, and interpret data analyses for epidemiological research or public health purposes.


Subject(s)
Population Surveillance/methods , Public Health/statistics & numerical data , Research Design/statistics & numerical data , Africa , Congo , Disease Outbreaks , Humans
20.
Emerg Infect Dis ; 25(5): 856-864, 2019 05.
Article in English | MEDLINE | ID: mdl-31002075

ABSTRACT

In 2017, the exacerbation of an ongoing countrywide cholera outbreak in the Democratic Republic of the Congo resulted in >53,000 reported cases and 1,145 deaths. To guide control measures, we analyzed the characteristics of cholera epidemiology in DRC on the basis of surveillance and cholera treatment center data for 2008-2017. The 2017 nationwide outbreak resulted from 3 distinct mechanisms: considerable increases in the number of cases in cholera-endemic areas, so-called hot spots, around the Great Lakes in eastern DRC; recurrent outbreaks progressing downstream along the Congo River; and spread along Congo River branches to areas that had been cholera-free for more than a decade. Case-fatality rates were higher in nonendemic areas and in the early phases of the outbreaks, possibly reflecting low levels of immunity and less appropriate prevention and treatment. Targeted use of oral cholera vaccine, soon after initial cases are diagnosed, could contribute to lower case-fatality rates.


Subject(s)
Cholera/epidemiology , Disease Outbreaks , Age Factors , Child , Child, Preschool , Cholera/history , Democratic Republic of the Congo/epidemiology , Geography, Medical , History, 21st Century , Humans , Incidence , Infant , Male , Public Health Surveillance , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL
...