Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(13): 5952-5962, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38506754

ABSTRACT

The presence of oxyanions, such as nitrate (NO3-) and phosphate (PO43-), regulates the nucleation and growth of goethite (Gt) and hematite (Hm) during the transformation of ferrihydrite (Fh). Our previous studies showed that oxyanion surface complexes control the rate and pathway of Fh transformation to Gt and Hm. However, how oxyanion surface complexes control the mechanism of Gt and Hm nucleation and growth during the Fh transformation is still unclear. We used synchrotron scattering methods and cryogenic transmission electron microscopy to investigate the effects of NO3- outer-sphere complexes and PO43- inner-sphere complexes on the mechanism of Gt and Hm formation from Fh. Our TEM results indicated that Gt particles form through a two-step model in which Fh particles first transform to Gt nanoparticles and then crystallographically align and grow to larger particles by oriented attachment (OA). In contrast, for the formation of Hm, imaging shows that Fh particles first aggregate and then transform to Hm through interface nucleation. This is consistent with our X-ray scattering results, which demonstrate that NO3- outer-sphere and PO43- inner-sphere complexes promote the formation of Gt and Hm, respectively. These results have implications for understanding the coupled interactions of oxyanions and iron oxy-hydroxides in Earth-surface environments.


Subject(s)
Ferric Compounds , Iron Compounds , Minerals , Adsorption
2.
Chemosphere ; 336: 139304, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37353168

ABSTRACT

Our understanding of the interactions between Fe oxides, humic acids (C), and Cu precipitation products in the environment are limited by our ability to measure specific forms and chemical interactions. Here, we examine the effect of solution pH, Fe:C molar ratio from 1:0 to 1:3, and Cu concentration on dissolved and colloidal Cu concentrations after sorption (SOR) or coprecipitation (CPT) reactions. This included specifically measuring the colloidal phases formed using asymmetrical flow field flow fractionation coupled to a total organic carbon analyzer and an inductively coupled plasma mass spectrometer. In the case of 1:0 Fe:C reactions, more Cu was associated with bulk solids and colloidal solids in CPT reaction products, particularly at pH 5 and 6. As C content increased, precipitation reactions led to more Cu retained in the bulk solid phase at lower pH, but more in the dissolved and colloidal phase at higher pH. Of the colloids formed at pH 7, about 10% of the dissolved Cu is present as Fe-C-Cu ternary phases, with the remainder as Cu-C or inorganic Cu phases, yet at pH 6, only Fe-Cu colloids were observed. Applying an additivity approach while using a NICA-Donnan C complexation model combined with a ferrihydrite surface complexation model, the model often predicts higher than observed dissolved Cu in CPT reactions with no C present, but lower than observed dissolved Cu with C present. In applying the model specifically to colloidal phases, much lower concentrations of colloid bound Cu is predicted than observed in the 1:0 Fe:C scenario, but as C content increases, more colloidal Cu is predicted than observed. Given the availability and lability of Cu in environmental systems is assumed to correspond to dissolved Cu, this work notes some differences in the dissolved and colloidal phases formed in different contexts.


Subject(s)
Copper , Humic Substances , Copper/chemistry , Humic Substances/analysis , Ferric Compounds/chemistry , Colloids/chemistry
3.
Environ Sci Technol ; 56(22): 15672-15684, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36219790

ABSTRACT

The rate and pathway of ferrihydrite (Fh) transformation at oxic conditions to more stable products is controlled largely by temperature, pH, and the presence of other ions in the system such as nitrate (NO3-), sulfate (SO42-), and arsenate (AsO43-). Although the mechanism of Fh transformation and oxyanion complexation have been separately studied, the effect of surface complex type and strength on the rate and pathway remains only partly understood. We have developed a kinetic model that describes the effects of surface complex type and strength on Fh transformation to goethite (Gt) and hematite (Hm). Two sets of oxyanion-adsorbed Fh samples were prepared, nonbuffered and buffered, aged at 70 ± 1.5 °C, and then characterized using synchrotron X-ray scattering methods and wet chemical analysis. Kinetic modeling showed a significant decrease in the rate of Fh transformation for oxyanion surface complexes dominated by strong inner-sphere (SO42- and AsO43-) versus weak outer-sphere (NO3-) bonding and the control. The results also showed that the Fh transformation pathway is influenced by the type of surface complex such that with increasing strength of bonding, a smaller fraction of Gt forms compared with Hm. These findings are important for understanding and predicting the role of Fh in controlling the transport and fate of metal and metalloid oxyanions in natural and applied systems.


Subject(s)
Ferric Compounds , Minerals , Kinetics , Adsorption , Ferric Compounds/chemistry , Minerals/chemistry
4.
Environ Sci Technol ; 56(19): 13546-13564, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36121207

ABSTRACT

Most soil quality measurements have been limited to laboratory-based methods that suffer from time delay, high cost, intensive labor requirement, discrete data collection, and tedious sample pretreatment. Real-time continuous soil monitoring (RTCSM) possesses a great potential to revolutionize field measurements by providing first-hand information for continuously tracking variations of heterogeneous soil parameters and diverse pollutants in a timely manner and thus enable constant updates essential for system control and decision-making. Through a systematic literature search and comprehensive analysis of state-of-the-art RTCSM technologies, extensive discussion of their vital hurdles, and sharing of our future perspectives, this critical review bridges the knowledge gap of spatiotemporal uninterrupted soil monitoring and soil management execution. First, the barriers for reliable RTCSM data acquisition are elucidated by examining typical soil monitoring techniques (e.g., electrochemical and spectroscopic sensors). Next, the prevailing challenges of the RTCSM sensor network, data transmission, data processing, and personalized data management are comprehensively discussed. Furthermore, this review explores RTCSM data application for updating diverse strategies including high-fidelity soil process models, control methodologies, digital soil mapping, soil degradation, food security, and climate change mitigation. Finally, the significance of RTCSM implementation in agricultural and environmental fields is underscored through illuminating future directions and perspectives in this systematic review.


Subject(s)
Environmental Pollutants , Soil , Agriculture
5.
Environ Sci Technol ; 53(11): 6352-6361, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31062960

ABSTRACT

A multistart optimization algorithm for surface complexation equilibrium parameters (MUSE) was applied to a large and diverse data set for chromate adsorption on iron (oxy)hydroxides (ferrihydrite and goethite). Within the Basic Stern and the charge-distribution multisite complexation (CD-MUSIC) framework, chromate binding constants and the Stern Layer capacitance were optimized simultaneously to develop a consistent parameter set for surface complexation models. This analysis resulted in three main conclusions regarding the model parameters: (a) There is no single set of parameter values that describes such diverse data sets when modeled independently. (b) Parameter differences among the data sets are mainly due to different amounts of total sites, i.e., surface area and surface coverages, rather than structural differences between the iron (oxy)hydroxides. (c) Unified equilibrium constants can be extracted if total site dependencies are taken into account. The implementation of the MUSE algorithm automated the process of optimizing the parameters in an objective and consistent manner and facilitated the extraction of predictive relationships for unified equilibrium constants. The extracted unified parameters can be implemented in reactive transport modeling in the field by either adopting the appropriate values for each surface coverage or by estimating error bounds for different conditions. The evaluation of a forward model with unified parameters successfully predicted chromate adsorption for a range of capacitance values.


Subject(s)
Chromates , Adsorption , Ferric Compounds
6.
Geochem Trans ; 19(1): 8, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29497868

ABSTRACT

Density functional theory (DFT) calculations were performed on a model of a ferrihydrite nanoparticle interacting with chromate ([Formula: see text]) in water. Two configurations each of monodentate and bidentate adsorbed chromate as well as an outer-sphere and a dissolved bichromate ([Formula: see text]) were simulated. In addition to the 3-D periodic planewave DFT models, molecular clusters were extracted from the energy-minimized structures. Calculated interatomic distances from the periodic and cluster models compare favorably with Extended X-ray Absorption Fine Structure spectroscopy values, with larger discrepancies seen for the clusters due to over-relaxation of the model substrate. Relative potential energies were derived from the periodic models and Gibbs free energies from the cluster models. A key result is that the bidentate binuclear configuration is the lowest in potential energy in the periodic models followed by the outer-sphere complex. This result is consistent with observations of the predominance of bidentate chromate adsorption on ferrihydrite under conditions of high surface coverage (Johnston Environ Sci Technol 46:5851-5858, 2012). Cluster models were also used to perform frequency analyses for comparison with observed ATR FTIR spectra. Calculated frequencies on monodentate, bidentate binuclear, and outer-sphere complexes each have infrared (IR)-active modes consistent with experiment. Inconsistencies between the thermodynamic predictions and the IR-frequency analysis suggest that the 3-D periodic models are not capturing key components of the system that influence the adsorption equilibria under varying conditions of pH, ionic strength and electrolyte composition. Model equilibration via molecular dynamics (MD) simulations is necessary to escape metastable states created during DFT energy minimizations based on the initial classical force field MD-derived starting configurations.

SELECTION OF CITATIONS
SEARCH DETAIL
...