Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Technol Adv Mater ; 20(1): 456-463, 2019.
Article in English | MEDLINE | ID: mdl-31191758

ABSTRACT

The role of epitaxial strain and chemical termination in selected interfaces of perovskite oxide heterostructures is under intensive investigation because of emerging novel electronic properties. SrTiO   3 (STO) is one of the most used substrates for these compounds, and along its < 001 > direction allows for two nonpolar chemical terminations: TiO2 and SrO. In this paper, we investigate the surface morphology and crystal structure of SrO epitaxial ultrathin films: from 1 to about 25 layers grown onto TiO   2 -terminated STO substrates. X-ray diffraction and transmission electron microscopy analysis reveal that SrO grows along its [ 111 ] direction with a 4% out-of-plane elongation. This large strain may underlay the mechanism of the formation of self-organized pattern of stripes that we observed in the initial growth. We found that the distance between the TiO   2 plane and the first deposited SrO layer is 0.27 ( 3 ) nm, a value which is about 40% bigger than in the STO bulk. We demonstrate that a single SrO-deposited layer has a different morphology compared to an ideal atomically flat chemical termination.

2.
Micron ; 113: 83-90, 2018 10.
Article in English | MEDLINE | ID: mdl-30007860

ABSTRACT

Crystal defects present in GaAs nanocrystals ∼15-50 nm in diameter and grown by metal organic vapor phase epitaxy on top of two different nanopatterned Si(001) substrates (nanopillars and nanotips with ∼40-80 nm openings embedded in a SiO2 matrix) and on a planar substrate, have been investigated by means of atomic-resolution aberration-corrected scanning transmission electron microscopy. Conditions of their formation are discussed. The defect analysis of the three GaAs/Si systems reveals a higher defect density in the GaAs crystals grown on nanopillars as compared to those grown on nanotips and the planar substrate, possibly concomitant to the atomic-scale irregularities identified at the patterned Si(001) nanopillars. It is concluded that the misfit strain in the GaAs nanocrystals is fully plastically relaxed while no noticeable substrate compliance effects are observed on any of the studied substrates.

3.
Biomed Opt Express ; 8(10): 4316-4330, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29082067

ABSTRACT

Neonatal jaundice (hyperbilirubinaemia) is common in neonates and, often, intensive blue-light phototherapy is required to prevent long-term effects. A photonic textile can overcome three major incubator-related concerns: Insulation of the neonate, human contact, and usage restraints. This paper describes the development of a homogeneous luminous textile from polymer optical fibres to use as a wearable, long-term phototherapy device. The bend out-coupling of light from the POFs was related to the weave production, e.g. weave pattern and yarn densities. Comfort, determined by friction against a skin model and breathability, was investigated additionally. Our textile is the first example of phototherapeutic clothing that is produced sans post-processing allowing for faster commercial production.

5.
J R Soc Interface ; 14(128)2017 03.
Article in English | MEDLINE | ID: mdl-28275123

ABSTRACT

Knowledge of an individual's skin condition is important for pressure ulcer prevention. Detecting early changes in skin through perfusion, oxygen saturation values, and pressure on tissue and subsequent therapeutic intervention could increase patients' quality of life drastically. However, most existing sensing options create additional risk of ulcer development due to further pressure on and chafing of the skin. Here, as a first component, we present a flexible, photonic textile-based sensor for the continuous monitoring of the heartbeat and blood flow. Polymer optical fibres (POFs) are melt-spun continuously and characterized optically and mechanically before being embroidered. The resulting sensor shows flexibility when embroidered into a moisture-wicking fabric, and withstands disinfection with hospital-type laundry cycles. Additionally, the new sensor textile shows a lower static coefficient of friction (COF) than conventionally used bedsheets in both dry and sweaty conditions versus a skin model. Finally, we demonstrate the functionality of our sensor by measuring the heartbeat at the forehead in reflection mode and comparing it with commercial finger photoplethysmography for several subjects. Our results will allow the development of flexible, individualized, and fully textile-integrated wearable sensors for sensitive skin conditions and general long-term monitoring of patients with risk for pressure ulcer.


Subject(s)
Heart/physiopathology , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Myocardial Contraction , Optical Fibers , Skin , Blood Flow Velocity , Female , Humans , Male
6.
Adv Healthc Mater ; 4(3): 330-55, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25358557

ABSTRACT

Long-term monitoring with optical fibers has moved into the focus of attention due to the applicability for medical measurements. Within this Review, setups of flexible, unobtrusive body-monitoring systems based on optical fibers and the respective measured vital parameters are in focus. Optical principles are discussed as well as the interaction of light with tissue. Optical fiber-based sensors that are already used in first trials are primarily selected for the section on possible applications. These medical textiles include the supervision of respiration, cardiac output, blood pressure, blood flow and its saturation with hemoglobin as well as oxygen, pressure, shear stress, mobility, gait, temperature, and electrolyte balance. The implementation of these sensor concepts prompts the development of wearable smart textiles. Thus, current sensing techniques and possibilities within photonic textiles are reviewed leading to multiparameter designs. Evaluation of these designs should show the great potential of optical fibers for the introduction into textiles especially due to the benefit of immunity to electromagnetic radiation. Still, further improvement of the signal-to-noise ratio is often necessary to develop a commercial monitoring system.


Subject(s)
Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Optical Fibers , Textiles , Blood Pressure Monitoring, Ambulatory/instrumentation , Blood Pressure Monitoring, Ambulatory/methods , Body Temperature , Equipment Design , Gait , Heart Rate , Humans , Hydrogen-Ion Concentration , Lung Volume Measurements/instrumentation , Lung Volume Measurements/methods , Oxygen/blood , Regional Blood Flow , Water-Electrolyte Balance
7.
ACS Nano ; 8(10): 10057-65, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25203916

ABSTRACT

Small organic semiconducting molecules assembling into supramolecular J- and H- aggregates have attracted much attention due to outstanding optoelectronic properties. However, their easy and reproducible fabrication is not yet sufficiently developed for industrial applications, except for silver halide photography. Here we present a method based on aggregate precipitation during the phase separation and dewetting of the evaporating dye precursor solution. The smaller the precursor droplets, the more pronounced the J-aggregation. The aggregates cause the films to resonantly scatter incoming light. Because the dye aggregate extinction resonances have narrowest bandwidths, a wavelength selectivity is observed that exceeds the selectivity of localized surface plasmon resonances. The aggregation mechanism can be easily applied to periodically structured substrates, making the method appealing for photonic applications. We demonstrate this point with a 2D grating, where the narrow absorption range of the aggregates leads to wavelength specific (one color only) scattering.

8.
Biomed Opt Express ; 5(8): 2537-47, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25136484

ABSTRACT

In this paper, a textile-based sensing principle for long term photopletysmography (PPG) monitoring is presented. Optical fibers were embroidered into textiles such that out-coupling and in-coupling of light was possible. The "light-in light-out" properties of the textile enabled the spectroscopic characterization of human tissue. For the optimization of the textile sensor, three different carrier fabrics and different fiber modifications were compared. The sample with best light coupling efficiency was successfully used to measure heart rate and SpO2 values of a subject. The latter was determined by using a modified Beer-Lambert law and measuring the light attenuation at two different wavelengths (632 nm and 894 nm). Moreover, the system was adapted to work in reflection mode which makes the sensor more versatile. The measurements were additionally compared with commercially available system and showed good correlation.

9.
Sensors (Basel) ; 14(7): 13088-101, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25051033

ABSTRACT

In this paper, a textile-based respiratory sensing system is presented. Highly flexible polymeric optical fibres (POFs) that react to applied pressure were integrated into a carrier fabric to form a wearable sensing system. After the evaluation of different optical fibres, different setups were compared. To demonstrate the feasibility of such a wearable sensor, the setup featuring the best performance was placed on the human torso, and thus it was possible to measure the respiratory rate. Furthermore, we show that such a wearable system enables to keep track of the way of breathing (diaphragmatic, upper costal and mixed) when the sensor is placed at different positions of the torso. A comparison of the results with the output of some commercial respiratory measurements devices confirmed the utility of such a monitoring device.


Subject(s)
Fiber Optic Technology/instrumentation , Monitoring, Ambulatory/instrumentation , Monitoring, Physiologic/instrumentation , Respiratory Rate/physiology , Adult , Equipment Design/instrumentation , Humans , Male , Optical Fibers , Respiration , Textiles
10.
Nanotechnology ; 24(39): 395301, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24013454

ABSTRACT

We demonstrate a reliable fabrication method to produce plasmonic dipole nanoantennas with gap values in the range of 3.5-20 nm. The method combines electron beam lithography to create gold nanorods and helium focused ion beam milling to cut the gaps. Results show a reproducibility within 1 nm. Scattering spectra of antennas show a red shift of resonance wavelengths and an increase of the intensity of resonance peaks with a decrease of the gap size, which is in agreement with finite element simulations. The measured refractive index sensitivity was about 250 nm per refractive index unit for antennas with gap values below 5 nm.

11.
Sensors (Basel) ; 13(9): 11956-68, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24021967

ABSTRACT

In this paper, different polymer optical fibres for applications in force sensing systems in textile fabrics are reported. The proposed method is based on the deflection of the light in fibre waveguides. Applying a force on the fibre changes the geometry and affects the wave guiding properties and hence induces light loss in the optical fibre. Fibres out of three different elastic and transparent copolymer materials were successfully produced and tested. Moreover, the influence of the diameter on the sensing properties was studied. The detectable force ranges from 0.05 N to 40 N (applied on 3 cm of fibre length), which can be regulated with the material and the diameter of the fibre. The detected signal loss varied from 0.6% to 78.3%. The fibres have attenuation parameters between 0.16-0.25 dB/cm at 652 nm. We show that the cross-sensitivies to temperature, strain and bends are low. Moreover, the high yield strength (0.0039-0.0054 GPa) and flexibility make these fibres very attractive candidates for integration into textiles to form wearable sensors, medical textiles or even computing systems.


Subject(s)
Manometry/instrumentation , Optical Fibers , Polymers/chemistry , Refractometry/instrumentation , Transducers , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Materials Testing , Stress, Mechanical , Tensile Strength
12.
ACS Nano ; 7(6): 5506-13, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23706086

ABSTRACT

Studying and understanding the conditions under which organic semiconductors can be engineered to form aligned single crystals in thin films is of primary importance owing to their unique orientation-dependent optoelectronic properties. Efforts to reach this goal by self-assembly from solution-processed films have been rewarded only with limited success. In this article we present a new method to grow single crystalline thin films via solvent annealing. We identify solvate crystal growth in combination with a specific film dewetting morphology as key to successful fabrication of single crystals. Furthermore, these 2D single crystals can align on chemically patterned substrates to minimize their interfacial energy. We explore in situ the conditions for crystal formation and alignment.

13.
Plasmonics ; 6-6(2): 327-336, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21743802

ABSTRACT

We study the effect of a spiral corrugation on the outer surface of a fully metal-coated scanning near-field optical microscopy (SNOM) probe using the finite element method. The introduction of a novel form of asymmetry, devoid of any preferential spatial direction and covering the whole angular range of the originally axisymmetric tip, allows attaining strong field localization for a linearly polarised mode with arbitrary orientation. Compared to previously proposed asymmetric structures which require linearly polarised excitation properly oriented with respect to the asymmetry, such a configuration enables significant simplification in mode injection. In fact, not only is the need for the delicate procedure to generate radially polarised beams overcome, but also the relative alignment between the linearly polarised beam and the tip modification is no longer critical.

14.
J Opt Soc Am A Opt Image Sci Vis ; 21(8): 1512-7, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15330480

ABSTRACT

The temporal-coupled-mode theory is directly applied to the design of devices that feature a resonator with a high quality factor. For the temporal-coupled-mode theory we calculate the decay rate of the resonator to determine the transmission properties of the device. The analysis using the decay rates requires little computational effort, and therefore the optimum device properties can be determined quickly. Two examples, a wavelength filter and a resonator crossing, are presented to illustrate the use of the analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...