Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 4650, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301402

ABSTRACT

Characterizing the size and settling velocity of pyroclastic fragments injected into the atmosphere during volcanic eruptions (i.e., tephra) is crucial to the forecasting of plume and cloud dispersal. Optical disdrometers have been integrated into volcano monitoring networks worldwide in order to best constrain these parameters in real time. Nonetheless, their accuracy during tephra fallout still needs to be assessed. A significant complication is the occurrence of particle aggregates that modify size and velocity distributions of falling tephra. We made the first use of the Thies Clima Laser Precipitation Monitor (LPM) for tephra-fallout detection at Sakurajima volcano (Japan), which is characterized by a lower size detection window with respect to more commonly used disdrometers (e.g., Parsivel2) and can more easily distinguish different falling objects. For the first time, individual particles have been distinguished from most aggregates based on disdrometer data, with the potential to provide useful grain-size information in real time. In case of negligible aggregation, LPM and collected sample-based estimates are in agreement for both grain-size and sedimentation rate. In case of significant aggregation, particle shape analyses and a dedicated drag equation are used to filter out aggregates from LPM data that also provide good agreement with collected tephra samples.


Subject(s)
Disasters , Volcanic Eruptions , Atmosphere , Japan
2.
Sci Rep ; 12(1): 2044, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35132110

ABSTRACT

Aggregation of volcanic ash is known to significantly impact sedimentation from volcanic plumes. The study of particle aggregates during tephra fallout is crucial to increase our understanding of both ash aggregation and sedimentation. In this work, we describe key features of ash aggregates and ash sedimentation associated with eleven Vulcanian explosions at Sakurajima Volcano (Japan) based on state-of-the-art sampling techniques. We identified five types of aggregates of both Particle Cluster (PC) and Accretionary Pellet (AP) categories. In particular, we found that PCs and the first and third type of APs can coexist within the same eruption in rainy conditions. We also found that the aerodynamic properties of aggregates (e.g., terminal velocity and density) depend on their type. In addition, grainsize analysis revealed that characteristics of the grainsize distributions (GSDs) of tephra samples correlate with the typology of the aggregates identified. In fact, bimodal GSDs correlate with the presence of cored clusters (PC3) and liquid pellets (AP3), while unimodal GSDs correlate either with the occurrence of ash clusters (PC1) or with the large particles (coarse ash) coated by fine ash (PC2).

3.
Sci Rep ; 10(1): 13649, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32764652

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 9(1): 10006, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292470

ABSTRACT

Total Grain-Size Distribution (TGSD) of tephra deposits is key to the characterization of explosive volcanism, plume-dispersal modeling, and magmatic fragmentation studies. Nonetheless, various aspects that includes deposit exposure and data fitting make its determination extremely complex and affect its representativeness. In order to shed some lights on the reliability of derived TGSDs, we examine a large TGSD dataset in combination with a sensitivity analysis of sampling strategies. These analyses are based both on a well-studied tephra deposit and on synthetic deposits associated with a variety of initial eruptive and atmospheric conditions. Results demonstrate that TGSDs can be satisfactorily fitted by four distributions (lognormal, Rosin-Rammler, and power-law based either on the absolute or cumulative number of particles) that capture different distribution features. In particular, the Rosin-Rammler distribution best reproduces both the median and the tails of the TGSDs. The accuracy of reconstructed TGSDs is strongly controlled by the number and distribution of the sampling points. We conclude that TGSDs should be critically assessed based on dedicated sampling strategies and should be fitted by one of the mentioned theoretical distributions depending on the specific study objective (e.g., tephra-deposit characterization, physical description of explosive eruptions, tephra-dispersal modeling).

5.
J Acoust Soc Am ; 142(4): 2332, 2017 10.
Article in English | MEDLINE | ID: mdl-29092578

ABSTRACT

The lattice Boltzmann method (LBM) is emerging as a powerful engineering tool for aeroacoustic computations. However, the LBM has been shown to present accuracy and stability issues in the medium-low Mach number range, which is of interest for aeroacoustic applications. Several solutions have been proposed but are often too computationally expensive, do not retain the simplicity and the advantages typical of the LBM, or are not described well enough to be usable by the community due to proprietary software policies. An original regularized collision operator is proposed, based on the expansion of Hermite polynomials, that greatly improves the accuracy and stability of the LBM without significantly altering its algorithm. The regularized LBM can be easily coupled with both non-reflective boundary conditions and a multi-level grid strategy, essential ingredients for aeroacoustic simulations. Excellent agreement was found between this approach and both experimental and numerical data on two different benchmarks: the laminar, unsteady flow past a 2D cylinder and the 3D turbulent jet. Finally, most of the aeroacoustic computations with LBM have been done with commercial software, while here the entire theoretical framework is implemented using an open source library (palabos).

6.
Rev Sci Instrum ; 84(5): 054501, 2013 May.
Article in English | MEDLINE | ID: mdl-23742568

ABSTRACT

A dedicated 4-m-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques. With its diverging test section, the tunnel is designed to study the aero-dynamical behavior of non-spherical particles with terminal velocities between 5 and 27 ms(-1). A particle tracking velocimetry (PTV) code is developed to calculate drag coefficient of particles in standard conditions based on the real projected area of the particles. Results of our wind tunnel and PTV code are validated by comparing drag coefficient of smooth spherical particles and cylindrical particles to existing literature. Experiments are repeatable with average relative standard deviation of 1.7%. Our preliminary experiments on the effect of particle to fluid density ratio on drag coefficient of cylindrical particles show that the drag coefficient of freely suspended particles in air is lower than those measured in water or in horizontal wind tunnels. It is found that increasing aspect ratio of cylindrical particles reduces their secondary motions and they tend to be suspended with their maximum area normal to the airflow. The use of the vertical wind tunnel in combination with the PTV code provides a reliable and precise instrument for measuring drag coefficient of freely moving particles of various shapes. Our ultimate goal is the study of sedimentation and aggregation of volcanic particles (density between 500 and 2700 kgm(-3)) but the wind tunnel can be used in a wide range of applications.

7.
Science ; 283(5405): 1142-5, 1999 Feb 19.
Article in English | MEDLINE | ID: mdl-10024235

ABSTRACT

Crystalline silica (mostly cristobalite) was produced by vapor-phase crystallization and devitrification in the andesite lava dome of the Soufriere Hills volcano, Montserrat. The sub-10-micrometer fraction of ash generated by pyroclastic flows formed by lava dome collapse contains 10 to 24 weight percent crystalline silica, an enrichment of 2 to 5 relative to the magma caused by selective crushing of the groundmass. The sub-10-micrometer fraction of ash generated by explosive eruptions has much lower contents (3 to 6 percent) of crystalline silica. High levels of cristobalite in respirable ash raise concerns about adverse health effects of long-term human exposure to ash from lava dome eruptions.

SELECTION OF CITATIONS
SEARCH DETAIL
...