Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(3): e58355, 2013.
Article in English | MEDLINE | ID: mdl-23505494

ABSTRACT

Development of radio-protective agents that are non-toxic is critical in light of ever increasing threats associated with proliferation of nuclear materials, terrorism and occupational risks associated with medical and space exploration. In this communication, we describe the discovery, characterization and mechanism of action of ON01210.Na, which effectively protects mouse and human bone marrow cells from radiation-induced damage both in vitro and in vivo. Our results show that treatment of normal fibroblasts with ON01210.Na before and after exposure to ionizing radiation provides dose dependent protection against radiation-induced damage. Treatment of mice with ON01210.Na prior to radiation exposure was found to result in a more rapid recovery of their hematopoietic system. The mechanistic studies described here show that ON01210.Na manifests its protective effects through the up-regulation of PI3-Kinase/AKT pathways in cells exposed to radiation. These results suggest that ON 01210.Na is a safe and effective radioprotectant and could be a novel agent for use in radiobiological disasters.


Subject(s)
DNA Damage/drug effects , DNA Damage/radiation effects , Proto-Oncogene Proteins c-akt/metabolism , Radiation-Protective Agents/pharmacology , Signal Transduction/drug effects , Signal Transduction/radiation effects , Sulfonamides/pharmacology , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/radiation effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/radiation effects , Humans , Mice , Small Molecule Libraries
2.
Bioorg Med Chem ; 18(6): 2317-2326, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20188579

ABSTRACT

Novel (E)-alpha-benzylthio chalcones are reported with preliminary in vitro activity data indicating that several of them are potent inhibitors (comparable to imatinib, the reference compound) of BCR-ABL phosphorylation in leukemic K562 cells, known to express high levels of BCR-ABL. The ability of such compounds to significantly inhibit K562 cell proliferation suggests that this scaffold could be a promising lead for the development of anticancer agents that are able to block BCR-ABL phosphorylation in leukemic cells.


Subject(s)
Chalcones/chemical synthesis , Chalcones/pharmacology , Drug Design , Fusion Proteins, bcr-abl/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Cell Proliferation/drug effects , Chalcones/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Fusion Proteins, bcr-abl/metabolism , Humans , K562 Cells , Molecular Structure , Phosphorylation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/metabolism , Stereoisomerism , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...