Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 223(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38376465

ABSTRACT

DNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present cell models that allow inducible and reversible DNAme modulation through DNMT1 depletion. By dynamically assessing whole genome and locus-specific effects of induced passive demethylation through cell divisions, we reveal a cooperative activity between DNMT1 and DNMT3B, but not of DNMT3A, to maintain and control DNAme. We show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin, compartmentalization, and peripheral localization. DNA methylation loss coincides with a gradual reduction of cell fitness due to G1 arrest, with minor levels of mitotic failure. Altogether, this system allows DNMTs and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNAme dysfunction and human disease.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , DNA Methyltransferase 3A , Epigenomics , Humans , Cell Division , Heterochromatin/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methyltransferase 3A/genetics , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL
...