Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Viruses ; 15(5)2023 05 11.
Article in English | MEDLINE | ID: mdl-37243238

ABSTRACT

The main objective of this study was to investigate the dynamic of SARS-CoV-2 viral excretion in rectal swab (RS), saliva, and nasopharyngeal swab (NS) samples from symptomatic patients and asymptomatic contacts. In addition, in order to evaluate the replication potential of SARS-CoV-2 in the gastrointestinal (GI) tract and the excretion of infectious SARS-CoV-2 from feces, we investigated the presence of subgenomic nucleoprotein gene (N) mRNA (sgN) in RS samples and cytopathic effects in Vero cell culture. A prospective cohort study was performed to collect samples from symptomatic patients and contacts in Rio de Janeiro, Brazil, from May to October 2020. One hundred and seventy-six patients had samples collected at home visits and/or during the follow up, resulting in a total of 1633 RS, saliva, or NS samples. SARS-CoV-2 RNA was detected in 130 (73.9%) patients who had at least one sample that tested positive for SARS-CoV-2. The presence of replicating SARS-CoV-2 in RS samples, measured by the detection of sgN mRNA, was successfully achieved in 19.4% (6/31) of samples, whilst infectious SARS-CoV-2, measured by the generation of cytopathic effects in cell culture, was identified in only one RS sample. Although rare, our results demonstrated the replication capacity of SARS-CoV-2 in the GI tract, and infectious viruses in one RS sample. There is still a gap in the knowledge regarding SARS-CoV-2 fecal-oral transmission. Additional studies are warranted to investigate fecal or wastewater exposure as a risk factor for transmission in human populations.


Subject(s)
COVID-19 , Communicable Diseases , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , RNA, Viral/genetics , Brazil/epidemiology , Prospective Studies
2.
Sci Rep ; 13(1): 7437, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156846

ABSTRACT

COVID-19 vaccines have dramatically reduced rates of severe infection requiring hospitalization. However, SARS-CoV-2 variants have reduced vaccine effectiveness at preventing any symptomatic infection. This real-world study analyzed binding and neutralizing antibodies generated after complete vaccination and boosting across three vaccine platforms. Binding antibodies decayed most slowly in people under 60 with hybrid immunity. Neutralizing antibodies against Omicron BA.1 were reduced compared to other variants. The anamnestic anti-spike IgG response to the first boost was more pronounced than after the second boost. Monitoring of the effects of SARS-CoV-2 mutations on disease severity and the effectiveness of therapeutics is warranted.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccination , Antibodies, Neutralizing , Antibodies, Viral
3.
Sci Transl Med ; 15(689): eade5795, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36989376

ABSTRACT

Yellow fever virus (YFV) is a reemerging global health threat, driven by several factors, including increased spread of the mosquito vector and rapid urbanization. Although a prophylactic vaccine exists, vaccine hesitancy, supply deficits, and distribution difficulties leave specific populations at risk of severe YFV disease, as evidenced by recent outbreaks in South America. To establish a treatment for patients with severe YFV infection, we tested 37 YFV-specific monoclonal antibodies isolated from vaccinated humans and identified two capable of potently neutralizing multiple pathogenic primary YFV isolates. Using both hamster and nonhuman primate models of lethal YFV infection, we demonstrate that a single administration of either of these two potently neutralizing antibodies during acute infection fully controlled viremia and prevented severe disease and death in treated animals. Given the potential severity of YFV-induced disease, our results show that these antibodies could be effective in saving lives and fill a much-needed void in managing YFV cases during outbreaks.


Subject(s)
Yellow Fever Vaccine , Yellow Fever , Cricetinae , Animals , Humans , Yellow fever virus , Antibodies, Neutralizing/therapeutic use , Yellow Fever Vaccine/adverse effects , Yellow Fever/prevention & control , Antibodies, Viral/therapeutic use , Antibodies, Monoclonal/therapeutic use
4.
Viruses ; 15(2)2023 02 04.
Article in English | MEDLINE | ID: mdl-36851651

ABSTRACT

In Brazil, a yellow fever (YF) outbreak was reported in areas considered YF-free for decades. The low vaccination coverage and the increasing forest fragmentation, with the wide distribution of vector mosquitoes, have been related to yellow fever virus (YFV) transmission beyond endemic areas since 2016. Aiming to elucidate the molecular and phylogenetic aspects of YFV spread on a local scale, we generated 43 new YFV genomes sampled from humans, non-human primates (NHP), and primarily, mosquitoes from highly heterogenic areas in 15 localities from Rio de Janeiro (RJ) state during the YFV 2016-2019 outbreak in southeast Brazil. Our analysis revealed that the genetic diversity and spatial distribution of the sylvatic transmission of YFV in RJ originated from at least two introductions and followed two chains of dissemination, here named the YFV RJ-I and YFV RJ-II clades. They moved with similar dispersal speeds from the north to the south of the RJ state in parallel directions, separated by the Serra do Mar Mountain chain, with YFV RJ-I invading the north coast of São Paulo state. The YFV RJ-I clade showed a more significant heterogeneity across the entire polyprotein. The YFV RJ-II clade, with only two amino acid polymorphisms, mapped at NS1 (I1086V), present only in mosquitoes at the same locality and NS4A (I2176V), shared by all YFV clade RJ-II, suggests a recent clustering of YFV isolates collected from different hosts. Our analyses strengthen the role of surveillance, genomic analyses of YVF isolated from other hosts, and environmental studies into the strategies to forecast, control, and prevent yellow fever outbreaks.


Subject(s)
Culicidae , Yellow Fever , Animals , Yellow fever virus/genetics , Yellow Fever/epidemiology , Brazil/epidemiology , Phylogeny , Mosquito Vectors , Forests
5.
Viruses ; 15(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36680231

ABSTRACT

Since late 2016, a yellow fever virus (YFV) variant carrying a set of nine amino acid variations has circulated in South America. Three of them were mapped on the methyltransferase (MTase) domain of viral NS5 protein. To assess whether these changes affected viral infectivity, we synthesized YFV carrying the MTase of circulating lineage as well as its isoform with the residues of the previous strains (NS5 K101R, NS5 V138I, and NS5 G173S). We observed a slight difference in viral growth properties and plaque phenotype between the two synthetic YFVs. However, the MTase polymorphisms associated with the Brazilian strain of YFV (2016-2019) confer more susceptibility to the IFN-I. In addition, in vitro MTase assay revealed that the interaction between the YFV MTase and the methyl donor molecule (SAM) is altered in the Brazilian MTase variant. Altogether, the results reported here describe that the MTase carrying the molecular signature of the Brazilian YFV circulating since 2016 might display a slight decrease in its catalytic activity but virtually no effect on viral fitness in the parameters comprised in this study. The most marked influence of these residues stands in the immune escape against the antiviral response mediated by IFN-I.


Subject(s)
Interferon Type I , Yellow fever virus , Yellow fever virus/physiology , Interferon Type I/genetics , Amino Acids , Immune Evasion , Brazil , Methyltransferases/metabolism , Viral Nonstructural Proteins/genetics
6.
Viruses ; 14(8)2022 08 19.
Article in English | MEDLINE | ID: mdl-36016440

ABSTRACT

Yellow fever virus (YFV) caused an outbreak in the Brazilian Southeast from 2016 to 2019, of the most significant magnitude since the 1900s. An investigation of the circulating virus revealed that most of the genomes detected in this period carried nine unique amino acid polymorphisms, with eight located in the non-structural proteins NS3 and NS5, which are pivotal for viral replication. To elucidate the effect of these amino acid changes on viral infection, we constructed viruses carrying amino acid alterations in NS3 and NS5, performed infection in different cells, and assessed their neurovirulence in BALB/c mice and infected AG129 mice. We observed that the residues that compose the YFV 2016-2019 molecular signature in the NS5 protein might have been related to an attenuated phenotype, and that the alterations in the NS3 protein only slightly affected viral infection in AG129 mice, increasing to a low extent the mortality rate of these animals. These results contributed to unveiling the role of specific naturally occurring amino acid changes in the circulating strain of YFV in Brazil.


Subject(s)
Yellow Fever , Amino Acids/genetics , Animals , Brazil/epidemiology , Disease Outbreaks , Mice , Phenotype , Yellow Fever/epidemiology , Yellow fever virus/genetics
7.
Microorganisms ; 10(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35630300

ABSTRACT

The possibility of a Zika virus epidemic resurgence requires studies to understand its mechanisms of pathogenicity. Here, we describe the isolation of the Zika virus from breast milk (Rio-BM1) and compare its genetic and virological properties with two other isolates (Rio-U1 and Rio-S1) obtained during the same epidemic period. Complete genomic analysis of these three viral isolates showed that they carry characteristics of the American isolates and belong to the Asian genotype. Furthermore, we detected eight non-synonymous single nucleotide variants and multiple nucleotide polymorphisms that reflect phenotypic changes. The new isolate, Rio-BM1, showed the lowest replication rates in mammalian cells, induced lower cell death rates, was more susceptible to treatment with type I IFN, and was less pathogenic than Rio-U1 in a murine model. In conclusion, the present study shows evidence that the isolate Rio-BM1 is more attenuated than Rio-U1, probably due to the impact of genetic alterations in the modulation of virulence. The results obtained in our in vitro model were consistent with the pathogenicity observed in the animal model, indicating that this method can be used to assess the virulence level of other isolates or to predict the pathogenicity of reverse genetic constructs containing other polymorphisms.

8.
Front Microbiol ; 13: 757084, 2022.
Article in English | MEDLINE | ID: mdl-35237244

ABSTRACT

Since the beginning of the XXI Century, the yellow fever virus (YFV) has been cyclically spreading from the Amazon basin to Brazil's South and Southeast regions, culminating in an unprecedented outbreak that started in 2016. In this work, we studied four YFV isolated from non-human primates obtained during outbreaks in the states of Rio Grande do Sul in 2008 (PR4408), Goiás (GO05), and Espírito Santo (ES-504) in 2017, and Rio de Janeiro (RJ 155) in 2019. These isolates have genomic differences mainly distributed in non-structural proteins. We compared the isolates' rates of infection in mammal and mosquito cells and neurovirulence in adult mice. RJ 155 and PR4408 YFV isolates exhibited higher infectivity in mammalian cells and neurovirulence in mice. In mosquito Aag2 cells, GO05 and PR4408 displayed the lowest proliferation rates. These results suggest that RJ 155 and PR4408 YFV isolates carry some genomic markers that increase infectivity in mammal hosts. From this characterization, it is possible to contribute to discovering new molecular markers for the virulence of YFV.

9.
PLoS Negl Trop Dis ; 16(2): e0010166, 2022 02.
Article in English | MEDLINE | ID: mdl-35171909

ABSTRACT

The tropism of Zika virus (ZIKV) has been described in the nervous system, blood, placenta, thymus, and skeletal muscle. We investigated the mechanisms of skeletal muscle susceptibility to ZIKV using an in vitro model of human skeletal muscle myogenesis, in which myoblasts differentiate into myotubes. Myoblasts were permissive to ZIKV infection, generating productive viral particles, while myotubes controlled ZIKV replication. To investigate the underlying mechanisms, we used gene expression profiling. First, we assessed gene changes in myotubes compared with myoblasts in the model without infection. As expected, we observed an increase in genes and pathways related to the contractile muscle system in the myotubes, a reduction in processes linked to proliferation, migration and cytokine production, among others, confirming the myogenic capacity of our system in vitro. A comparison between non-infected and infected myoblasts revealed more than 500 differentially expressed genes (DEGs). In contrast, infected myotubes showed almost 2,000 DEGs, among which we detected genes and pathways highly or exclusively expressed in myotubes, including those related to antiviral and innate immune responses. Such gene modulation could explain our findings showing that ZIKV also invades myotubes but does not replicate in these differentiated cells. In conclusion, we showed that ZIKV largely (but differentially) disrupts gene expression in human myoblasts and myotubes. Identifying genes involved in myotube resistance can shed light on potential antiviral mechanisms against ZIKV infection.


Subject(s)
Zika Virus Infection , Zika Virus , Antiviral Agents/metabolism , Female , Gene Expression , Humans , Muscle Fibers, Skeletal/metabolism , Myoblasts/metabolism , Pregnancy , Zika Virus/physiology , Zika Virus Infection/genetics
10.
Cell Host Microbe ; 30(2): 248-259.e6, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34998466

ABSTRACT

The resurgence of yellow fever in South America has prompted vaccination against the etiologic agent, yellow fever virus (YFV). Current vaccines are based on a live-attenuated YF-17D virus derived from a virulent African isolate. The capacity of these vaccines to induce neutralizing antibodies against the vaccine strain is used as a surrogate for protection. However, the sensitivity of genetically distinct South American strains to vaccine-induced antibodies is unknown. We show that antiviral potency of the polyclonal antibody response in vaccinees is attenuated against an emergent Brazilian strain. This reduction was attributable to amino acid changes at two sites in central domain II of the glycoprotein E, including multiple changes at the domain I-domain II hinge, which are unique to and shared among most South American YFV strains. Our findings call for a reevaluation of current approaches to YFV immunological surveillance in South America and suggest approaches for updating vaccines.


Subject(s)
Yellow Fever Vaccine , Yellow Fever , Antibodies, Viral , Brazil , Genotype , Humans , Vaccines, Attenuated , Yellow fever virus/genetics
11.
Int J Infect Dis ; 114: 58-61, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34757006

ABSTRACT

We describe a case of prolonged COVID-19 caused by the SARS-CoV-2 Gamma variant in a fully vaccinated healthcare worker, 387 days after an infection caused by lineage B.1.1.33. Infections were confirmed by whole-genome sequencing and corroborated by the detection of neutralizing antibodies in convalescent serum samples. Considering the permanent exposure of this healthcare worker to SARS-CoV-2, the waning immunity after the first infection, the low efficacy of the inactivated vaccine at preventing COVID-19, the immune escape of the Gamma variant (VOC), and the burden of post-COVID syndrome, this individual would have benefited from an additional dose of a heterologous vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil , COVID-19/complications , COVID-19/therapy , Humans , Immunization, Passive , Reinfection , Vaccines, Inactivated , COVID-19 Serotherapy , Post-Acute COVID-19 Syndrome
12.
Mem Inst Oswaldo Cruz ; 116: e210166, 2021.
Article in English | MEDLINE | ID: mdl-34755818

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.33-derived lineage named N.9 was described recently in Brazil and it's considered a potential variant of interest (VOI) due to the presence of E484K substitution at the receptor-binding domain (RBD) of the Spike (S) protein. OBJECTIVE: To describe the first detection of variant N.9 in Rio de Janeiro State. METHODS: SARS-CoV-2 N.9 was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), whole-genome sequencing and phylogenetic analysis. FINDINGS: Here, we report two SARS-CoV-2 N.9 lineage strains in Rio de Janeiro. One of them had only the E484K substitution of the six N.9 lineage-defining mutations. Other three strains pre-defined as N.9 have the same genomic profile. These four strains are grouped within the B.1.1.33 lineage and basal to the N.9 lineage in our phylogenetic analysis, and we call them "N.9-like/B.1.1.33 + E484K". MAIN CONCLUSIONS: The phylogenetic analysis shows four independent introductions of N.9 in the state of Rio de Janeiro in October and December 2020, January and March 2021. SARS-CoV-2 N.9 dissemination in the Rio de Janeiro could have been limited by the emergence and dominance of other variants, mainly by the lineage P.2 VOI Zeta that emerged in the same period and co-circulated with N.9, as observed in the neighboring State of São Paulo.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil , Humans , Mutation , Phylogeny
14.
Front Microbiol ; 12: 639655, 2021.
Article in English | MEDLINE | ID: mdl-33717035

ABSTRACT

In 2016, the world experienced the unprecedented Zika epidemic. The ZIKV emerged as a major human pathogen due to its association with the impairment of perinatal development and Guillain-Barré syndrome. The occurrence of these severe cases of Zika points to the significance of studies for understanding the molecular determinants of flavivirus pathogenesis. Reverse genetics is a powerful method for studying the replication and determinants of pathogenesis, virulence, and viral attenuation of flaviviruses, facilitating the design of vaccines and therapeutics. However, the main hurdle in the development of infectious clones is the instability of full-length cDNA in Escherichia coli. Here, we described the development of a genetically stable and efficient infectious clone based on the ZIKV Rio-U1 isolated in the 2016 epidemic in Brazil. The employed strategy consisted of cloning the viral cDNA genome into two stable plasmid subclones and obtaining a high-quality cDNA template with increment in DNA mass for in vitro transcription by PCR amplification. The strategy for developing a ZIKV infectious cDNA clone designed in this study was successful, yielding a replicative and efficient clone-derived virus with high similarities with its parental virus, Rio-U1, by comparison of the proliferation capacity in mammal and insect cells. The infection of AG129 immunocompromised mice caused identical mortality rates, with similar disease progression and morbidity in the animals infected with the parental and the cDNA-derived virus. Histopathological analyses of mouse brains infected with the parental and the cDNA-derived viruses revealed a similar pathogenesis degree. We observed meningoencephalitis, cellular pyknosis, and neutrophilic invasion adjacent to the choroid plexus and perivascular cuffs with the presence of neutrophils. The developed infectious clone will be a tool for genetic and functional studies in vitro and in vivo to understand viral infection and pathogenesis better.

15.
J Infect Dis ; 224(6): 1060-1068, 2021 09 17.
Article in English | MEDLINE | ID: mdl-33528564

ABSTRACT

BACKGROUND: Zika virus (ZIKV) is associated with severe congenital abnormalities and laboratory diagnosis of antenatal infection is difficult. Here we evaluated ZIKV neutralizing antibody (nAb) kinetics in infants born to mothers with PCR-confirmed ZIKV infection during pregnancy. METHODS: Neonates (n = 98) had serum specimens tested repeatedly for ZIKV nAb over the first 2 years of life using virus neutralization test (VNT). ZIKV neonatal infection was confirmed by RT-PCR in blood or urine and/or presence of ZIKV IgM antibodies, and results were correlated with infant clinical features. RESULTS: Postnatal laboratory evidence of ZIKV vertical transmission was obtained for 60.2% of children, while 32.7% exhibited clinical abnormalities. Congenital abnormalities were found in 37.3% of children with confirmed ZIKV infection and 31.0% of children without confirmed infection (P = .734). All but 1 child displayed a physiologic decline in ZIKV nAb, reflecting maternal antibody decay, despite an early ZIKV-IgM response in one-third of infants. CONCLUSIONS: Infants with antenatal ZIKV exposure do not develop ZIKV nAb despite an early IgM response. Therefore, ZIKV VNT in children is not useful for diagnosis of congenital infection. In light of these findings, it remains to be determined if children infected in utero are potentially susceptible to reinfection.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious , Zika Virus Infection/diagnosis , Zika Virus/immunology , Biomarkers , Female , Humans , Immunoglobulin M , Infant , Infant, Newborn , Kinetics , Male , Polymerase Chain Reaction , Pregnancy , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/congenital
16.
Mem. Inst. Oswaldo Cruz ; 116: e210166, 2021. graf
Article in English | LILACS | ID: biblio-1346580

ABSTRACT

BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.33-derived lineage named N.9 was described recently in Brazil and it's considered a potential variant of interest (VOI) due to the presence of E484K substitution at the receptor-binding domain (RBD) of the Spike (S) protein. OBJECTIVE To describe the first detection of variant N.9 in Rio de Janeiro State. METHODS SARS-CoV-2 N.9 was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), whole-genome sequencing and phylogenetic analysis. FINDINGS Here, we report two SARS-CoV-2 N.9 lineage strains in Rio de Janeiro. One of them had only the E484K substitution of the six N.9 lineage-defining mutations. Other three strains pre-defined as N.9 have the same genomic profile. These four strains are grouped within the B.1.1.33 lineage and basal to the N.9 lineage in our phylogenetic analysis, and we call them "N.9-like/B.1.1.33 + E484K". MAIN CONCLUSIONS The phylogenetic analysis shows four independent introductions of N.9 in the state of Rio de Janeiro in October and December 2020, January and March 2021. SARS-CoV-2 N.9 dissemination in the Rio de Janeiro could have been limited by the emergence and dominance of other variants, mainly by the lineage P.2 VOI Zeta that emerged in the same period and co-circulated with N.9, as observed in the neighboring State of São Paulo.


Subject(s)
Humans , SARS-CoV-2 , COVID-19 , Phylogeny , Brazil , Mutation
17.
Sci Rep ; 10(1): 13069, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747639

ABSTRACT

Although the Zika virus (ZIKV) epidemic is subsiding, immune responses that are important for controlling acute infection have not been definitively characterized. Nonhuman primate (NHP) models were rapidly developed to understand the disease and to test vaccines, and these models have since provided an understanding of the immune responses that correlate with protection during natural infection and vaccination. Here, we infected a small group of male rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques with a minimally passaged Brazilian ZIKV isolate and used multicolor flow cytometry and transcriptional profiling to describe early immune patterns following infection. We found evidence of strong innate antiviral responses together with induction of neutralizing antibodies and T cell responses. We also assessed the relative importance of CD8 T cells in controlling infection by carrying out CD8 T cell depletion in an additional two animals of each species. CD8 depletion appeared to dysregulate early antiviral responses and possibly increase viral persistence, but the absence of CD8 T cells ultimately did not impair control of the virus. Together, these data describe immunological trends in two NHP species during acute ZIKV infection, providing an account of early responses that may be important in controlling infection.


Subject(s)
Zika Virus Infection/immunology , Zika Virus Infection/veterinary , Zika Virus/immunology , Adaptive Immunity , Animals , Immunity, Humoral , Macaca mulatta , Male , Monocytes/metabolism , Phenotype , T-Lymphocytes/immunology , Transcription, Genetic , Viral Load/immunology , Zika Virus Infection/genetics , Zika Virus Infection/virology
18.
Nat Commun ; 11(1): 3510, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32665616

ABSTRACT

We report Zika virus (ZIKV) vertical transmission in 130 infants born to PCR+ mothers at the time of the Rio de Janeiro epidemic of 2015-2016. Serum and urine collected from birth through the first year of life were tested by quantitative reverse transcriptase polymerase chain reaction (PCR) and/or IgM Zika MAC-ELISA. Four hundred and seven specimens are evaluated; 161 sera tested by PCR and IgM assays, 85 urines by PCR. Sixty-five percent of children (N = 84) are positive in at least one assay. Of 94 children tested within 3 months of age, 70% are positive. Positivity declines to 33% after 3 months. Five children are PCR+ beyond 200 days of life. Concordance between IgM and PCR results is 52%, sensitivity 65%, specificity 40% (positive PCR results as gold standard). IgM and serum PCR are 61% concordant; serum and urine PCR 55%. Most children (65%) are clinically normal. Equal numbers of children with abnormal findings (29 of 45, 64%) and normal findings (55 of 85, 65%) have positive results, p = 0.98. Earlier maternal trimester of infection is associated with positive results (p = 0.04) but not clinical disease (p = 0.98). ZIKV vertical transmission is frequent but laboratory confirmed infection is not necessarily associated with infant abnormalities.


Subject(s)
Communicable Diseases/transmission , Communicable Diseases/virology , Zika Virus Infection/transmission , Zika Virus Infection/virology , Zika Virus/pathogenicity , Female , Humans , Immunoglobulin M/metabolism , Polymerase Chain Reaction , Pregnancy , Virus Diseases/virology
19.
Brain Pathol ; 30(6): 1017-1027, 2020 11.
Article in English | MEDLINE | ID: mdl-32585067

ABSTRACT

Zika virus (ZIKV) is a flavivirus that can cause neuropathogenesis in adults and fetal neurologic malformation following the infection of pregnant women. We used a nonhuman primate model, the Indian-origin Rhesus macaque (IRM), to gain insight into virus-associated hallmarks of ZIKV-induced adult neuropathology. We find that the virus causes prevalent acute and chronic neuroinflammation and chronic disruption of the blood-brain barrier (BBB) in adult animals. ZIKV infection resulted in specific short- and long-term augmented expression of the chemokine CXCL12 in the central nervous system (CNS)of adult IRMs. Moreover, CXCL12 expression persists long after the initial viral infection is apparently cleared. CXCL12 plays a key role both in regulating lymphocyte trafficking through the BBB to the CNS and in mediating repair of damaged neural tissue including remyelination. Understanding how CXCL12 expression is controlled will likely be of central importance in the definition of ZIKV-associated neuropathology in adults.


Subject(s)
Blood-Brain Barrier/virology , Brain/virology , Chemokine CXCL12/metabolism , Encephalitis/virology , Up-Regulation , Zika Virus Infection/pathology , Zika Virus/isolation & purification , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Encephalitis/metabolism , Encephalitis/pathology , Female , Macaca mulatta , Male , Pregnancy , Zika Virus Infection/metabolism
20.
Viruses ; 12(4)2020 03 26.
Article in English | MEDLINE | ID: mdl-32224891

ABSTRACT

In the last decade, Flaviviruses such as yellow fever (YFV) and Zika (ZIKV) have expanded their transmission areas. These viruses originated in Africa, where they exhibit both sylvatic and interhuman transmission cycles. In Brazil, the risk of YFV urbanization has grown, with the sylvatic transmission approaching the most densely populated metropolis, while concern about ZIKV spillback to a sylvatic cycle has risen. To investigate these health threats, we carried out extensive collections and arbovirus screening of 144 free-living, non-human primates (NHPs) and 5219 mosquitoes before, during, and after ZIKV and YFV outbreaks (2015-2018) in southeast Brazil. ZIKV infection was not detected in any NHP collected at any time. In contrast, current and previous YFV infections were detected in NHPs sampled between 2017 and 2018, but not before the onset of the YFV outbreak. Mosquito pools screened by high-throughput PCR were positive for YFV when captured in the wild and during the YFV outbreak, but were negative for 94 other arboviruses, including ZIKV, regardless of the time of collection. In conclusion, there was no evidence of YFV transmission in coastal southeast Brazil before the current outbreak, nor the spread or establishment of an independent sylvatic cycle of ZIKV or urban Aedes aegypti transmission of YFV in the region. In view of the region's receptivity and vulnerability to arbovirus transmission, surveillance of NHPs and mosquitoes should be strengthened and continuous.


Subject(s)
Disease Outbreaks , Yellow Fever/transmission , Yellow Fever/virology , Zika Virus Infection/transmission , Zika Virus Infection/virology , Animals , Brazil/epidemiology , Genome, Viral , Genotype , Mosquito Vectors/virology , Primates/virology , Yellow Fever/epidemiology , Yellow fever virus , Zika Virus , Zika Virus Infection/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...