ABSTRACT
Locomotion problems in broiler chickens can cause economic losses of up to 40% of the total revenues due to carcass condemnation and downgrading at processing. Leg disorders, such as femoral lesions, tibial dyschondroplasia, and spondylolisthesis, substantially impact the welfare of chickens as these disorders can prevent birds from reaching the feeders and drinkers, thus reducing feed and water intake. The most important issues related to broiler welfare reported in the last two decades are their growing sensitivity to metabolic and locomotion problems due to the fast growth rates and inactivity. Traditional methods for the determination of gait score include the manual scoring of animal behavior in the broiler house. Recorded video images can also be used for manual scoring of chicken gait score. However, scoring of some animal-based information by human experts and manual methods remain difficult, time consuming and expensive when implemented at farm level. In an effort to objectively detect leg disorders, this study aimed at validating the photogrammetry technique as a non-invasive method for identifying locomotion problems in broilers. Photogrammetry allows determining the geometric properties of broilers from digital photos that are processed and analyzed using a computer software. Results obtained using photogrammetry were tested for their correlation with those obtained by accepted methodologies, including gait score and macroscopic examination of femoral degeneration and tibial dyschondroplasia. The photogrammetry results agreed with the results of the afore mentioned accepted methods.(AU)
Subject(s)
Animals , Animal Husbandry/methods , Poultry/growth & development , Poultry/physiology , Animal Welfare , Photometry/methods , Photometry/veterinary , Metabolism , Gait/physiology , Locomotion/physiology , Tibia/pathology , Chickens/injuries , Femur/injuries , Osteochondrodysplasias/physiopathology , Osteochondrodysplasias/veterinary , SoftwareABSTRACT
Locomotion problems in broiler chickens can cause economic losses of up to 40% of the total revenues due to carcass condemnation and downgrading at processing. Leg disorders, such as femoral lesions, tibial dyschondroplasia, and spondylolisthesis, substantially impact the welfare of chickens as these disorders can prevent birds from reaching the feeders and drinkers, thus reducing feed and water intake. The most important issues related to broiler welfare reported in the last two decades are their growing sensitivity to metabolic and locomotion problems due to the fast growth rates and inactivity. Traditional methods for the determination of gait score include the manual scoring of animal behavior in the broiler house. Recorded video images can also be used for manual scoring of chicken gait score. However, scoring of some animal-based information by human experts and manual methods remain difficult, time consuming and expensive when implemented at farm level. In an effort to objectively detect leg disorders, this study aimed at validating the photogrammetry technique as a non-invasive method for identifying locomotion problems in broilers. Photogrammetry allows determining the geometric properties of broilers from digital photos that are processed and analyzed using a computer software. Results obtained using photogrammetry were tested for their correlation with those obtained by accepted methodologies, including gait score and macroscopic examination of femoral degeneration and tibial dyschondroplasia. The photogrammetry results agreed with the results of the afore mentioned accepted methods.
Subject(s)
Animals , Poultry/growth & development , Poultry/physiology , Animal Welfare , Animal Husbandry/methods , Photometry/methods , Photometry/veterinary , Locomotion/physiology , Gait/physiology , Metabolism , Femur/injuries , Chickens/injuries , Osteochondrodysplasias/physiopathology , Osteochondrodysplasias/veterinary , Software , Tibia/pathologyABSTRACT
This study evaluated the performance, carcass yield and quality, and physiological stress indicators of broilers of three genetic strains reared at three housing densities for 29 days. A total of 828 day-old male chicks, with average initial weight of 40.0± 2.0g were used. Three genetic strains (Cobb 500, Ross 808, and Ross 508, with 276 birds each) and three housing densities (17, 19, and 21 broilers/m²) were tested. A completely randomized experimental design in a 3 x 3 factorial arrangement, with four replicates of 23 birds each, was applied. The following responses were evaluated: performance parameters (average weekly body weight, average daily gain, feed intake, feed conversion ratio), physiological stress indicators (blood glucose levels, blood cell counts), and carcass yield and quality (dermatosis, bruising, dermatitis, and femoral degeneration scores). Average weekly body weight (BW) and daily weight gain (DWG) were not influenced by rearing density (p0.05), but Cobb 500 broilers were the heaviest during the analyzed period. In the second week, Ross 508 birds showed better feed conversion ratio (FCR) when housed at the density of 17 broilers/m² (p0.001), whereas the best FCR of Ross 808 and Cobb 500 broilers was obtained at 21 broilers/m² (p0.001). Carcass yield was not influenced by the treatments (p0.05). Physiological stress indicators were not affected by the treatments, and remained within normal ranges (p0.05). Dermatosis scores (scratches) increased (p0.05) when housing density increased from 17 to 19 broilers /m².(AU)
Subject(s)
Animals , Chickens/anatomy & histology , Chickens/growth & development , Chickens/genetics , Animal Welfare , Meat/analysis , Poultry/growth & developmentABSTRACT
This study evaluated the performance, carcass yield and quality, and physiological stress indicators of broilers of three genetic strains reared at three housing densities for 29 days. A total of 828 day-old male chicks, with average initial weight of 40.0± 2.0g were used. Three genetic strains (Cobb 500, Ross 808, and Ross 508, with 276 birds each) and three housing densities (17, 19, and 21 broilers/m²) were tested. A completely randomized experimental design in a 3 x 3 factorial arrangement, with four replicates of 23 birds each, was applied. The following responses were evaluated: performance parameters (average weekly body weight, average daily gain, feed intake, feed conversion ratio), physiological stress indicators (blood glucose levels, blood cell counts), and carcass yield and quality (dermatosis, bruising, dermatitis, and femoral degeneration scores). Average weekly body weight (BW) and daily weight gain (DWG) were not influenced by rearing density (p0.05), but Cobb 500 broilers were the heaviest during the analyzed period. In the second week, Ross 508 birds showed better feed conversion ratio (FCR) when housed at the density of 17 broilers/m² (p0.001), whereas the best FCR of Ross 808 and Cobb 500 broilers was obtained at 21 broilers/m² (p0.001). Carcass yield was not influenced by the treatments (p0.05). Physiological stress indicators were not affected by the treatments, and remained within normal ranges (p0.05). Dermatosis scores (scratches) increased (p0.05) when housing density increased from 17 to 19 broilers /m².
Subject(s)
Animals , Animal Welfare , Meat/analysis , Chickens/anatomy & histology , Chickens/growth & development , Chickens/genetics , Poultry/growth & developmentABSTRACT
This study aimed at identifying the factors that affect the economic efficiency of broiler breeder production using the analysis of stochastic profit frontier function. Data were collected in 48 broiler breeder farms contracted by a commercial company located in southwestern Paraná, Brazil. The collected data refer to the last batch of fertile eggs that was delivered to the company, between January, 2008, and July, 2009. The following parameters were evaluated: production of hatching eggs per hen (number of eggs/hen), hatchability (hatch %), feed intake per hatching egg (g feed/ egg), production scale (number of birds/batch), farmer's experience in production activities, and labor type. Factors, such as area of occupied land, electricity costs, and invested capital were also evaluated. Results showed that the cost of electricity, as well as area of occupied land, production scale, and feed intake per hatching egg significantly affect the economic efficiency of the broiler breeder farms in Southwestern Paraná, Brazil.(AU)
Subject(s)
Animals , Economics/trends , Efficiency , Economics/statistics & numerical data , AnimalsABSTRACT
This study aimed at identifying the factors that affect the economic efficiency of broiler breeder production using the analysis of stochastic profit frontier function. Data were collected in 48 broiler breeder farms contracted by a commercial company located in southwestern Paraná, Brazil. The collected data refer to the last batch of fertile eggs that was delivered to the company, between January, 2008, and July, 2009. The following parameters were evaluated: production of hatching eggs per hen (number of eggs/hen), hatchability (hatch %), feed intake per hatching egg (g feed/ egg), production scale (number of birds/batch), farmer's experience in production activities, and labor type. Factors, such as area of occupied land, electricity costs, and invested capital were also evaluated. Results showed that the cost of electricity, as well as area of occupied land, production scale, and feed intake per hatching egg significantly affect the economic efficiency of the broiler breeder farms in Southwestern Paraná, Brazil.