Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Omega ; 9(23): 24774-24788, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882134

ABSTRACT

The development of positron emission tomography (PET) tracers capable of detecting α-synuclein (α-syn) aggregates in vivo would represent a breakthrough for advancing the understanding and enabling the early diagnosis of Parkinson's disease and related disorders. It also holds the potential to assess the efficacy of therapeutic interventions. However, this remains challenging due to different structures of α-syn aggregates, the need for selectivity over other structurally similar amyloid proteins, like amyloid-ß (Aß), which frequently coexist with α-syn pathology, and the low abundance of the target in the brain that requires the development of a high-affinity ligand. To develop a successful PET tracer for the central nervous system (CNS), stringent criteria in terms of polarity and molecular size must also be considered, as the tracer must penetrate the blood-brain barrier and have low nonspecific binding to brain tissue. Here, we report a series of arylpyrazolethiazole (APT) derivatives, rationally designed from a structure-activity relationship study centered on existing ligands for α-syn fibrils, with a particular focus on the selectivity toward α-syn fibrils and control of physicochemical properties suitable for a CNS PET tracer. In vitro competition binding assays performed against [3H]MODAG-001 using recombinant α-syn and Aß1-42 fibrils revealed APT-13 with an inhibition constant of 27.8 ± 9.7 nM and a selectivity of more than 3.3 fold over Aß. Radiolabeled [11C]APT-13 demonstrated excellent brain penetration in healthy mice with a peak standardized uptake value of 1.94 ± 0.29 and fast washout from the brain (t 1/2 = 9 ± 1 min). This study highlights the potential of APT-13 as a lead compound for developing PET tracers to detect α-syn aggregates in vivo.

2.
ACS Infect Dis ; 8(5): 1098-1106, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35436109

ABSTRACT

Precision antisense antibacterial agents may be developed into novel antibiotics in the fight against multidrug-resistant Gram-negative bacteria. In this study, a series of diaminobutanoic acid (DAB) dendrons are presented as novel carriers for the delivery of antisense antibacterial peptide nucleic acids (PNAs). The dendron-PNA conjugates targeting the essential acpP gene exhibit specific antisense antimicrobial bactericidal activity against Escherichia coli and Klebsiella pneumoniae at one-digit micromolar concentrations, while showing low toxicity to human cells. One compound selected from a structure-activity relationship series showed high stability in mouse and human serum (t1/2 ≫ 24 h) as well as in vivo activity against a multidrug-resistant, extended spectrum beta-lactamase-producing E. coli in a murine peritonitis model. The compound was also well tolerated in mice upon i.v. administration up to a dose of 20 mg/kg, and in vivo fluorescence imaging indicated clearance via renal excretion with slight accumulation in the kidneys and liver. Thus, DAB-based dendrons constitute a promising new chemistry platform for development of effective delivery agents for antibacterial drugs with possible in vivo use.


Subject(s)
Dendrimers , Escherichia coli Proteins , Peptide Nucleic Acids , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Dendrimers/pharmacology , Escherichia coli , Escherichia coli Proteins/metabolism , Gram-Negative Bacteria/metabolism , Membrane Transport Proteins , Mice , Peptide Nucleic Acids/chemistry , Peptide Nucleic Acids/pharmacology , Peptides/chemistry
3.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34577548

ABSTRACT

Neurodegenerative diseases such as Parkinson's disease (PD) are manifested by inclusion bodies of alpha-synuclein (α-syn) also called α-synucleinopathies. Detection of these inclusions is thus far only possible by histological examination of postmortem brain tissue. The possibility of non-invasively detecting α-syn will therefore provide valuable insights into the disease progression of α-synucleinopathies. In particular, α-syn imaging can quantify changes in monomeric, oligomeric, and fibrillic α-syn over time and improve early diagnosis of various α-synucleinopathies or monitor treatment progress. Positron emission tomography (PET) is a non-invasive in vivo imaging technique that can quantify target expression and drug occupancies when a suitable tracer exists. As such, novel α-syn PET tracers are highly sought after. The development of an α-syn PET tracer faces several challenges. For example, the low abundance of α-syn within the brain necessitates the development of a high-affinity ligand. Moreover, α-syn depositions are, in contrast to amyloid proteins, predominantly localized intracellularly, limiting their accessibility. Furthermore, another challenge is the ligand selectivity over structurally similar amyloids such as amyloid-beta or tau, which are often co-localized with α-syn pathology. The lack of a defined crystal structure of α-syn has also hindered rational drug and tracer design efforts. Our objective for this review is to provide a comprehensive overview of current efforts in the development of selective α-syn PET tracers.

4.
ACS Chem Neurosci ; 12(11): 2003-2012, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34019387

ABSTRACT

σ-1 receptors (σ1R) modulate nociceptive signaling, driving the search for selective antagonists to take advantage of this promising target to treat pain. In this study, a new series of benzylpiperazinyl derivatives has been designed, synthesized, and characterized for their affinities toward σ1R and selectivity over the σ-2 receptor (σ2R). Notably, 3-cyclohexyl-1-{4-[(4-methoxyphenyl)methyl]piperazin-1-yl}propan-1-one (15) showed the highest σ1R receptor affinity (Ki σ1 = 1.6 nM) among the series with a significant improvement of the σ1R selectivity (Ki σ2/Ki σ1= 886) compared to the lead compound 8 (Ki σ2/Ki σ1= 432). Compound 15 was further tested in a mouse formalin assay of inflammatory pain and chronic nerve constriction injury (CCI) of neuropathic pain, where it produced dose-dependent (3-60 mg/kg, i.p.) antinociception and anti-allodynic effects. Moreover, compound 15 demonstrated no significant effects in a rotarod assay, suggesting that this σ1R antagonist did not produce sedation or impair locomotor responses. Overall, these results encourage the further development of our benzylpiperazine-based σ1R antagonists as potential therapeutics for chronic pain.


Subject(s)
Receptors, sigma , Analgesics/pharmacology , Animals , Hyperalgesia/drug therapy , Ligands , Mice , Structure-Activity Relationship , Sigma-1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...