Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Exp Med ; 215(5): 1315-1325, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29549113

ABSTRACT

p38α activation of multiple effectors may underlie the failure of global p38α inhibitors in clinical trials. A unique inhibitor (CDD-450) was developed that selectively blocked p38α activation of the proinflammatory kinase MK2 while sparing p38α activation of PRAK and ATF2. Next, the hypothesis that the p38α-MK2 complex mediates inflammasome priming cues was tested. CDD-450 had no effect on NLRP3 expression, but it decreased IL-1ß expression by promoting IL-1ß mRNA degradation. Thus, IL-1ß is regulated not only transcriptionally by NF-κB and posttranslationally by the inflammasomes but also posttranscriptionally by p38α-MK2. CDD-450 also accelerated TNF-α and IL-6 mRNA decay, inhibited inflammation in mice with cryopyrinopathy, and was as efficacious as global p38α inhibitors in attenuating arthritis in rats and cytokine expression by cells from patients with cryopyrinopathy and rheumatoid arthritis. These findings have clinical translation implications as CDD-450 offers the potential to avoid tachyphylaxis associated with global p38α inhibitors that may result from their inhibition of non-MK2 substrates involved in antiinflammatory and housekeeping responses.


Subject(s)
Inflammasomes/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Signal Transduction , Animals , Arthritis/pathology , Bone and Bones/pathology , Cytokines/biosynthesis , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Joints/pathology , Male , Mice , Mitogen-Activated Protein Kinase 14/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , RNA Stability , Rats, Inbred Lew
2.
FASEB J ; 29(4): 1269-79, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25477279

ABSTRACT

Activating-mutations in NOD-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) cause neonatal-onset multisystem inflammatory disease. However, the ontogeny of skeletal anomalies in this disorder is poorly understood. Mice globally expressing the D301N mutation in Nlrp3 (D303N in human) model the human phenotype, including systemic inflammation and skeletal deformities. To gain insights into the skeletal manifestations, we generated mice in which the expression of D301N Nlrp3 (Nlrp3( D301N)) is restricted to myeloid cells. These mice exhibit systemic inflammation and severe osteopenia (∼ 60% lower bone mass) similar to mice globally expressing the knock-in mutation, consistent with the paradigm of innate immune-driven cryopyrinopathies. Because systemic inflammation may indirectly affect bone homeostasis, we engineered mice in which Nlrp3( D301N) is expressed specifically in osteoclasts, the cells that resorb bone. These mice also develop ∼ 50% lower bone mass due to increased osteolysis, but there is no systemic inflammation and no change in osteoclast number. Mechanistically, aside from its role in IL-1ß maturation, Nlrp3( D301N) expression enhances osteoclast bone resorbing ability through reorganization of actin cytoskeleton while promoting the degradation of poly(ADP-ribose) polymerase 1, an inhibitor of osteoclastogenesis. Thus, NLRP3 inflammasome activation is not restricted to the production of proinflammatory mediators but also leads to cytokine-autonomous responses.


Subject(s)
Carrier Proteins/metabolism , Osteolysis/etiology , Animals , Bone Diseases, Metabolic/etiology , Bone Diseases, Metabolic/pathology , Bone Diseases, Metabolic/physiopathology , Carrier Proteins/genetics , Carrier Proteins/immunology , Cell Differentiation , Cell Lineage , Cryopyrin-Associated Periodic Syndromes/etiology , Cryopyrin-Associated Periodic Syndromes/pathology , Cryopyrin-Associated Periodic Syndromes/physiopathology , Disease Models, Animal , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Inflammation/etiology , Inflammation/pathology , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Mutant Proteins/genetics , Mutant Proteins/immunology , Mutant Proteins/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid Cells/pathology , NLR Family, Pyrin Domain-Containing 3 Protein , Osteoclasts/immunology , Osteoclasts/metabolism , Osteoclasts/pathology , Osteolysis/pathology , Osteolysis/physiopathology , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Proteolysis
3.
J Cell Sci ; 126(Pt 24): 5598-609, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24101723

ABSTRACT

Canonical Wnt (cWnt) signaling through ß-catenin regulates osteoblast proliferation and differentiation to enhance bone formation. We previously reported that osteogenic action of ß-catenin is dependent on BMP signaling. Here, we further examined interactions between cWnt and BMP in bone. In osteoprogenitors stimulated with BMP2, ß-catenin localizes to the nucleus, physically interacts with Smad4, and is recruited to DNA-binding transcription complexes containing Smad4, R-Smad1/5 and TCF4. Furthermore, Tcf/Lef-dependent transcription, Ccnd1 expression and proliferation all increase when Smad4, 1 or 5 levels are low, whereas TCF/Lef activities decrease when Smad4 expression is high. The ability of Smad4 to antagonize transcription of Ccnd1 is dependent on DNA-binding activity but Smad4-dependent transcription is not required. In mice, conditional deletion of Smad4 in osterix(+) cells increases mitosis of cells on trabecular bone surfaces as well as in primary osteoblast cultures from adult bone marrow and neonatal calvaria. By contrast, ablation of Smad4 delays differentiation and matrix mineralization by primary osteoblasts in response to Wnt3a, indicating that loss of Smad4 perturbs the balance between proliferation and differentiation in osteoprogenitors. We propose that Smad4 and Tcf/Lef transcription complexes compete for ß-catenin, thus restraining cWnt-dependent proliferative signals while favoring the matrix synthesizing activity of osteoblasts.


Subject(s)
Cell Proliferation , Osteoblasts/metabolism , Smad4 Protein/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Binding Sites , Bone Morphogenetic Protein 2/physiology , Calcification, Physiologic , Cell Line , Cyclin D1/genetics , Cyclin D1/metabolism , Gene Expression Regulation , Gene Knockout Techniques , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mitosis , Promoter Regions, Genetic , Protein Binding , Smad4 Protein/genetics , Transcription, Genetic
4.
Arthritis Rheum ; 64(11): 3531-42, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22899318

ABSTRACT

OBJECTIVE: The mechanistic link between Janus kinase (JAK) signaling and structural damage to arthritic joints in rheumatoid arthritis (RA) is poorly understood. This study was undertaken to investigate how selective inhibition of JAK with tofacitinib (CP-690,550) affects osteoclast-mediated bone resorption in a rat adjuvant-induced arthritis (AIA) model, as well as human T lymphocyte RANKL production and human osteoclast differentiation and function. METHODS: Hind paw edema, inflammatory cell infiltration, and osteoclast-mediated bone resorption in rat AIA were assessed using plethysmography, histopathologic analysis, and immunohistochemistry; plasma and hind paw tissue levels of cytokines and chemokines (including RANKL) were also assessed. In vitro RANKL production by activated human T lymphocytes was evaluated by immunoassay, while human osteoclast differentiation and function were assessed via quantitative tartrate-resistant acid phosphatase staining and degradation of human bone collagen, respectively. RESULTS: Edema, inflammation, and osteoclast-mediated bone resorption in rats with AIA were dramatically reduced after 7 days of treatment with the JAK inhibitor, which correlated with reduced numbers of CD68/ED-1+, CD3+, and RANKL+ cells in the paws; interleukin-6 (transcript and protein) levels were rapidly reduced in paw tissue within 4 hours of the first dose, whereas it took 4-7 days of therapy for RANKL levels to decrease. Tofacitinib did not impact human osteoclast differentiation or function, but did decrease human T lymphocyte RANKL production in a concentration-dependent manner. CONCLUSION: These results suggest that the JAK inhibitor tofacitinib suppresses osteoclast-mediated structural damage to arthritic joints, and this effect is secondary to decreased RANKL production.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Janus Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , RANK Ligand/metabolism , Animals , Arthritis, Experimental/immunology , Bone Resorption/drug therapy , Bone Resorption/immunology , Bone Resorption/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Female , Humans , Janus Kinases/metabolism , Macrophages/cytology , Macrophages/drug effects , Monocytes/cytology , Monocytes/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/enzymology , Piperidines , Rats , Rats, Inbred Lew , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/enzymology
5.
PLoS One ; 7(4): e35979, 2012.
Article in English | MEDLINE | ID: mdl-22558291

ABSTRACT

The NLRP3 inflammasome complex is responsible for maturation of the pro-inflammatory cytokine, IL-1ß. Mutations in NLRP3 are responsible for the cryopyrinopathies, a spectrum of conditions including neonatal-onset multisystem inflammatory disease (NOMID). While excessive production of IL-1ß and systemic inflammation are common to all cryopyrinopathy disorders, skeletal abnormalities, prominently in the knees, and low bone mass are unique features of patients with NOMID. To gain insights into the mechanisms underlying skeletal abnormalities in NOMID, we generated knock-in mice globally expressing the D301N NLRP3 mutation (ortholog of D303N in human NLRP3). NOMID mice exhibit neutrophilia in blood and many tissues, including knee joints, and high levels of serum inflammatory mediators. They also exhibit growth retardation and severe postnatal osteopenia stemming at least in part from abnormally accelerated bone resorption, attended by increased osteoclastogenesis. Histologic analysis of knee joints revealed abnormal growth plates, with loss of chondrocytes and growth arrest in the central region of the epiphyses. Most strikingly, a tissue "spike" was observed in the mid-region of the growth plate in the long bones of all NOMID mice that may be the precursor to more severe deformations analogous to those observed in NOMID patients. These findings provide direct evidence linking a NOMID-associated NLRP3-activating mutation to abnormalities of postnatal skeletal growth and bone remodeling.


Subject(s)
Bone Development , Bone and Bones/abnormalities , Bone and Bones/metabolism , Carrier Proteins/metabolism , Inflammation/pathology , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Resorption/complications , Bone Resorption/pathology , Bone and Bones/pathology , Cell Differentiation , Cell Fractionation , Cell Lineage , Cell Proliferation , Collagen Type II/metabolism , Cryopyrin-Associated Periodic Syndromes/complications , Cryopyrin-Associated Periodic Syndromes/pathology , Growth Plate/abnormalities , Inflammasomes , Inflammation/complications , Inflammation Mediators/metabolism , Joints/pathology , Leukocytosis/complications , Leukocytosis/pathology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , Organ Size , Osteoblasts/metabolism , Osteoblasts/pathology , Osteoclasts/metabolism , Osteoclasts/pathology , Staining and Labeling , Survival Analysis
6.
Bioorg Med Chem Lett ; 21(13): 4059-65, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21640588

ABSTRACT

A series of N-aryl pyridinone inhibitors of p38 mitogen activated protein (MAP) kinase were designed and prepared based on the screening hit SC-25028 (1) and structural comparisons to VX-745 (5). The focus of the investigation targeted the dependence of potency and metabolic stability on the benzyloxy connectivity, the role of the C-6 position and the substitution pattern on the N-phenyl ring. Further optimization produced the highly selective and potent pyridinones 2 and 3. These inhibitors exhibited activity in both acute and chronic models of inflammation.


Subject(s)
Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Disease Models, Animal , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Male , Microsomes, Liver/enzymology , Molecular Structure , Pyridazines/chemistry , Pyridazines/pharmacology , Pyridones/chemistry , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley
7.
Bioorg Med Chem Lett ; 21(13): 4066-71, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21641211

ABSTRACT

The synthesis and SAR studies of a novel N-aryl pyridinone class of p38 kinase inhibitors are described. Systematic structural modifications to the HTS lead, 5, led to the identification of (-)-4a as a clinical candidate for the treatment of inflammatory diseases. Additionally, the chiral synthesis and properties of (-)-4a are described.


Subject(s)
Benzamides/chemical synthesis , Benzamides/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyrones/chemical synthesis , Pyrones/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Benzamides/chemistry , Disease Models, Animal , Dogs , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Macaca fascicularis , Male , Molecular Structure , Pyridones , Pyrones/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , p38 Mitogen-Activated Protein Kinases/chemistry , p38 Mitogen-Activated Protein Kinases/pharmacology
8.
Bioorg Med Chem ; 19(3): 1242-55, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21236687

ABSTRACT

Installation of sites for metabolism in the lead compound PHA-767408 was the key focus of the IKK-2 inhaled program. This paper reports our efforts to identify a novel series of aminopyridinecarboxamide-based IKK-2 inhibitors, which display low nanomolar potency against IKK-2 with long duration of action (DOA), and metabolically labile to phase I and/or phase II metabolizing enzymes with potential capability for multiple routes of clearance. Several compounds have demonstrated their potential usefulness in the treatment of asthma and chronic obstructive pulmonary disease (COPD).


Subject(s)
Aminopyridines/chemical synthesis , Asthma/drug therapy , I-kappa B Kinase/antagonists & inhibitors , Niacinamide/analogs & derivatives , Protein Kinase Inhibitors/chemical synthesis , Pulmonary Disease, Chronic Obstructive/drug therapy , Pyrazoles/chemical synthesis , Administration, Inhalation , Aminopyridines/chemistry , Aminopyridines/pharmacology , Binding, Competitive , Drug Design , HEK293 Cells , Humans , Indazoles/chemistry , Indazoles/metabolism , Indazoles/pharmacology , Isonicotinic Acids/chemistry , Isonicotinic Acids/metabolism , Isonicotinic Acids/pharmacology , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Molecular Targeted Therapy , Niacinamide/chemical synthesis , Niacinamide/chemistry , Niacinamide/metabolism , Niacinamide/pharmacology , Phenethylamines/metabolism , Potassium Channel Blockers/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemistry , Pyrazoles/metabolism , Pyrazoles/pharmacology , Structure-Activity Relationship , Sulfonamides/metabolism
9.
J Biol Chem ; 285(18): 13498-506, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20167598

ABSTRACT

The classical nuclear factor kappaB (NF-kappaB) signaling pathway is under the control of the IkappaB kinase (IKK) complex, which consists of IKK-1, IKK-2, and NF-kappaB essential modulator (NEMO). This complex is responsible for the regulation of cell proliferation, survival, and differentiation. Dysregulation of this pathway is associated with several human diseases, and as such, its inhibition offers an exciting opportunity for therapeutic intervention. NEMO binding domain (NBD) peptides inhibit the binding of recombinant NEMO to IKK-2 in vitro. However, direct evidence of disruption of this binding by NBD peptides in biological systems has not been provided. Using a cell system, we expanded on previous observations to show that NBD peptides inhibit inflammation-induced but not basal cytokine production. We report that these peptides cause the release of IKK-2 from an IKK complex and disrupt NEMO-IKK-2 interactions in cells. We demonstrate that by interfering with NEMO-IKK-2 interactions, NBD peptides inhibit IKK-2 phosphorylation, without affecting signaling intermediates upstream of the IKK complex of the NF-kappaB pathway. Furthermore, in a cell-free system of IKK complex activation by TRAF6 (TNF receptor-associated factor 6), we show that these peptides inhibit the ability of this complex to phosphorylate downstream substrates, such as p65 and inhibitor of kappaB alpha (IkappaB alpha). Thus, consistent with the notion that NEMO regulates IKK-2 catalytic activity by serving as a scaffold, appropriately positioning IKK-2 for activation by upstream kinase(s), our findings provide novel insights into the molecular mechanisms by which NBD peptides exert their anti-inflammatory effects in cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , I-kappa B Kinase/metabolism , I-kappa B Kinase/pharmacology , Multiprotein Complexes/metabolism , Peptides/pharmacology , Transcription Factor RelA/metabolism , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Humans , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/chemistry , Multiprotein Complexes/antagonists & inhibitors , Peptides/chemistry , Peptides/metabolism , Phosphorylation , Protein Binding/drug effects , Protein Structure, Tertiary , TNF Receptor-Associated Factor 6/metabolism , Transcription Factor RelA/antagonists & inhibitors
11.
J Pharmacol Exp Ther ; 330(2): 377-88, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19478133

ABSTRACT

Nuclear factor-kappaB (NF-kappaB) is one of the major families of transcription factors activated during the inflammatory response in asthma and chronic obstructive pulmonary disease. Inhibitory factor-kappaB kinase 2 (IKK-2) has been shown to play a pivotal role in cytokine-induced NF-kappaB activation in airway epithelium and in disease-relevant cells. Nevertheless, the potential toxicity of specific IKK-2 inhibitors may be unacceptable for oral delivery in chronic obstructive pulmonary disease. Therefore, local delivery to the lungs is an attractive alternative that warrants further exploration. Here, we describe potent and selective small-molecule IKK-2 inhibitors [8-(5-chloro-2-(4-methylpiperazin-1-yl)isonicotinamido)-1-(4-fluorophenyl)-4,5-dihydro-1H-benzo[g]indazole-3-carboxamide (PHA-408) and 8-(2-(3,4-bis(hydroxymethyl)-3,4-dimethylpyrrolidin-1-yl)-5-chloroisonicotinamido)-1-(4-fluorophenyl)-4,5-dihydro-1H-benzo-[g]indazole-3-carboxamide (PF-184)] that are competitive for ATP have slow off-rates from IKK-2 and display broad in vitro anti-inflammatory activities resulting from NF-kappaB pathway inhibition. Notably, PF-184 has been designed to have high systemic clearance, which limits systemic exposure and maximizes the effects locally in the airways. We used an inhaled lipopolysaccharide-induced rat model of neutrophilia to address whether inhibiting NF-kappaB activation locally within the airways would show anti-inflammatory effects in the absence of systemic exposure. PHA-408, a low-clearance compound previously shown to be efficacious orally in a rodent model of arthritis, dose-dependently attenuated inhaled lipopolysaccharide-induced cell infiltration and cytokine production. Interestingly, PF-184 produced comparable dose-dependent anti-inflammatory activity by intratracheal administration and was as efficacious as intratracheally administered fluticasone propionate (fluticasone). Together, these results support the potential therapeutic utility of IKK-2 inhibition in inflammatory pulmonary diseases and demonstrate anti-inflammatory efficacy of an inhaled IKK-2 inhibitor in a rat airway model of neutrophilia.


Subject(s)
Drug Delivery Systems/methods , I-kappa B Kinase/antagonists & inhibitors , Inflammation Mediators/administration & dosage , Lung Diseases/enzymology , Protein Kinase Inhibitors/administration & dosage , Administration, Oral , Animals , Cells, Cultured , Disease Models, Animal , Humans , I-kappa B Kinase/metabolism , Inflammation/drug therapy , Inflammation/enzymology , Inflammation/immunology , Inflammation Mediators/chemistry , Inflammation Mediators/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/enzymology , Leukocytes, Mononuclear/immunology , Lung Diseases/drug therapy , Lung Diseases/immunology , Male , Protein Binding/drug effects , Protein Binding/physiology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Rats
12.
J Pharmacol Exp Ther ; 329(1): 14-25, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19168710

ABSTRACT

Nuclear factor (NF)-kappaB activation has been clearly linked to the pathogenesis of multiple inflammatory diseases including arthritis. The central role that IkappaB kinase-2 (IKK-2) plays in regulating NF-kappaB signaling in response to inflammatory stimuli has made this enzyme an attractive target for therapeutic intervention. Although diverse chemical classes of IKK-2 inhibitors have been identified, the binding kinetics of these inhibitors has limited the scope of their applications. In addition, safety assessments of IKK-2 inhibitors based on a comprehensive understanding of the pharmacokinetic/pharmacodynamic relationships have yet to be reported. Here, we describe a novel, potent, and highly selective IKK-2 inhibitor, PHA-408 [8-(5-chloro-2-(4-methylpiperazin-1-yl)isonicotinamido)-1-(4-fluorophenyl)-4,5-dihydro-1H-benzo[g]indazole-3-carboxamide]. PHA-408 is an ATP-competitive inhibitor, which binds IKK-2 tightly with a relatively slow off rate. In arthritis-relevant cells and animal models, PHA-408 suppresses inflammation-induced cellular events, including IkappaBalpha phosphorylation and degradation, p65 phosphorylation and DNA binding activity, the expression of inflammatory mediators, and joint pathology. PHA-408 was efficacious in a chronic model of arthritis with no adverse effects at maximally efficacious doses. Stemming from its ability to bind tightly to IKK-2, as a novelty, we demonstrated that PHA-408-mediated inhibition of IKK-2 activity correlated very well with its ability to modulate the fate of IKK-2 substrates and downstream transcriptional events. We ultimately directly linked IKK-2 activity ex vivo and in vivo to markers of inflammation with the inhibitor plasma concentrations. Thus, PHA-408 represents a powerful tool to further gain insight into the mechanisms by which IKK-2 regulates NF-kappaB signaling and validates IKK-2 as a therapeutic target.


Subject(s)
Arthritis/pathology , Enzyme Inhibitors/pharmacology , I-kappa B Kinase/antagonists & inhibitors , NF-kappa B/drug effects , Signal Transduction/drug effects , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Blotting, Western , Cells, Cultured , Chromatography, High Pressure Liquid , Electrophoretic Mobility Shift Assay , Enzyme Inhibitors/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , I-kappa B Kinase/metabolism , Inflammation/chemically induced , Inflammation/pathology , Lipopolysaccharides/pharmacology , Rats , Rats, Inbred Lew , Recombinant Proteins/metabolism , Streptococcus/immunology , Synovial Fluid/cytology , Synovial Fluid/drug effects , Tandem Mass Spectrometry , Tomography, X-Ray Computed , Transcription Factor RelA/genetics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
13.
Bioorg Med Chem Lett ; 15(11): 2870-5, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15911271

ABSTRACT

A series of 21 novel 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides were synthesized and evaluated for the inhibition of IKK-2. In spite of their often modest activity on the enzyme, six selected analogs showed significant inhibition of the production of inflammatory cytokine IL-8 in IL-1beta stimulated rheumatoid arthritis-derived synovial fibroblasts, demonstrating their potential usefulness as NF-kappaB regulators.


Subject(s)
Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiophenes/pharmacology , Cells, Cultured , Fibroblasts/drug effects , Humans , I-kappa B Kinase , Interleukin-8/antagonists & inhibitors , Interleukin-8/biosynthesis , Thiophenes/chemistry
14.
J Biol Chem ; 278(35): 32861-71, 2003 Aug 29.
Article in English | MEDLINE | ID: mdl-12813046

ABSTRACT

NF-kappa B-induced gene expression contributes significantly to the pathogenesis of inflammatory diseases such as arthritis. I kappa B kinase (IKK) is the converging point for the activation of NF-kappa B by a broad spectrum of inflammatory agonists and is thus a novel target for therapeutic intervention. We describe a small molecule, selective inhibitor of IKK-2, SC-514, which does not inhibit other IKK isoforms or other serine-threonine and tyrosine kinases. SC-514 inhibits the native IKK complex or recombinant human IKK-1/IKK-2 heterodimer and IKK-2 homodimer similarly. IKK-2 inhibition by SC-514 is selective, reversible, and competitive with ATP. SC-514 inhibits transcription of NF-kappa B-dependent genes in IL-1 beta-induced rheumatoid arthritis-derived synovial fibroblasts in a dose-dependent manner. When the mechanism of NF-kappa B activation was evaluated in the presence of this inhibitor, several interesting observations were found. First, SC-514 did not inhibit the phosphorylation and activation of the IKK complex. Second, there was a delay but not a complete blockade in I kappa B alpha phosphorylation and degradation; likewise there was a slightly slowed, decreased import of p65 into the nucleus and a faster export of p65 from the nucleus. Finally, both I kappa B alpha and p65 were comparable substrates for IKK-2, with similar Km and Kcat values, and SC-514 inhibited the phosphorylation of either substrate similarly. Thus, the effect of SC-514 on cytokine gene expression may be a combination of inhibiting I kappa B alpha phosphorylation/degradation, affecting NF-kappa B nuclear import/export as well as the phosphorylation and transactivation of p65.


Subject(s)
Enzyme Inhibitors/pharmacology , Fibroblasts/metabolism , Gene Expression Regulation , Interleukin-1/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Synovial Membrane/immunology , Thiophenes/pharmacology , Active Transport, Cell Nucleus , Adenosine Triphosphate/metabolism , Animals , Blotting, Western , Cell Adhesion , Cell Line , Cell Nucleus/metabolism , Cells, Cultured , Dimerization , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Genes, Reporter , Genetic Vectors , Glutathione Transferase/metabolism , Humans , Hydrolysis , I-kappa B Kinase , Inflammation , Inhibitory Concentration 50 , Kinetics , Lipopolysaccharides/pharmacology , Models, Chemical , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Precipitin Tests , Protein Binding , Protein Transport , Rats , Rats, Wistar , Recombinant Proteins/metabolism , Signal Transduction , Time Factors , Transcription Factor RelA , Transcription, Genetic , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...