Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38092066

ABSTRACT

Callosobruchus maculatus is a major agricultural pest of legume crops worldwide and an established model system in ecology and evolution. Yet, current molecular biological resources for this species are limited. Here, we employ Hi-C sequencing to generate a greatly improved genome assembly and we annotate its repetitive elements in a dedicated in-depth effort where we manually curate and classify the most abundant unclassified repeat subfamilies. We present a scaffolded chromosome-level assembly, which is 1.01 Gb in total length with 86% being contained within the 9 autosomes and the X chromosome. Repetitive sequences accounted for 70% of the total assembly. DNA transposons covered 18% of the genome, with the most abundant superfamily being Tc1-Mariner (9.75% of the genome). This new chromosome-level genome assembly of C. maculatus will enable future genetic and evolutionary studies not only of this important species but of beetles more generally.


Subject(s)
Coleoptera , Animals , Coleoptera/genetics , Genome , Repetitive Sequences, Nucleic Acid , X Chromosome , DNA Transposable Elements/genetics , Phylogeny
2.
BMC Genom Data ; 24(1): 61, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919672

ABSTRACT

OBJECTIVES: Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with limited treatment options. Unlike other breast cancer subtypes, the scarcity of specific therapies and greater frequencies of distant metastases contribute to its aggressiveness. We aimed to find epigenetic changes that aid in the understanding of the dissemination process of these cancers. DATA DESCRIPTION: Using CRISPR/Cas9, our experimental approach led us to identify and disrupt an insulator element, IE8, whose activity seemed relevant for cell invasion. The experiments were performed in two well-established TNBC cellular models, the MDA-MB-231 and the MDA-MB-436. To gain insights into the underlying molecular mechanisms of TNBC invasion ability, we generated and characterized high-resolution chromatin interaction (Hi-C) and chromatin accessibility (ATAC-seq) maps in both cell models and complemented these datasets with gene expression profiling (RNA-seq) in MDA-MB-231, the cell line that showed more significant changes in chromatin accessibility. Altogether, our data provide a comprehensive resource for understanding the spatial organization of the genome in TNBC cells, which may contribute to accelerating the discovery of TNBC-specific alterations triggering advances for this devastating disease.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Chromatin/genetics , Cell Line, Tumor , Gene Expression Profiling , Breast/metabolism , Breast/pathology
3.
Nat Biotechnol ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735263

ABSTRACT

MicroRNAs (miRNAs) exert their gene regulatory effects on numerous biological processes based on their selection of target transcripts. Current experimental methods available to identify miRNA targets are laborious and require millions of cells. Here we have overcome these limitations by fusing the miRNA effector protein Argonaute2 to the RNA editing domain of ADAR2, allowing the detection of miRNA targets transcriptome-wide in single cells. miRNAs guide the fusion protein to their natural target transcripts, causing them to undergo A>I editing, which can be detected by sensitive single-cell RNA sequencing. We show that agoTRIBE identifies functional miRNA targets, which are supported by evolutionary sequence conservation. In one application of the method we study microRNA interactions in single cells and identify substantial differential targeting across the cell cycle. AgoTRIBE also provides transcriptome-wide measurements of RNA abundance and allows the deconvolution of miRNA targeting in complex tissues at the single-cell level.

4.
Bioessays ; 42(5): e1900225, 2020 05.
Article in English | MEDLINE | ID: mdl-32105369

ABSTRACT

RNA polymerase II is recruited to DNA double-strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage-induced long non-coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA-like molecules or degraded by different ribonucleases. They can also form double-stranded RNAs or DNA:RNA hybrids. The DNA:RNA hybrids formed at DSBs contribute to the recruitment of repair factors during the early steps of homologous recombination (HR) and, in this way, contribute to the accuracy of the DNA repair. However, if not resolved, the DNA:RNA hybrids are highly mutagenic and prevent the recruitment of later HR factors. Here recent discoveries about the synthesis, processing, and degradation of dilncRNAs are revised. The focus is on RNA clearance, a necessary step for the successful repair of DSBs and the aim is to reconcile contradictory findings on the effects of dilncRNAs and DNA:RNA hybrids in HR.


Subject(s)
DNA Breaks, Double-Stranded , RNA , DNA/genetics , DNA Repair , Homologous Recombination , RNA/genetics
5.
Nat Commun ; 10(1): 2135, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31086179

ABSTRACT

The exosome is a ribonucleolytic complex that plays important roles in RNA metabolism. Here we show that the exosome is necessary for the repair of DNA double-strand breaks (DSBs) in human cells and that RNA clearance is an essential step in homologous recombination. Transcription of DSB-flanking sequences results in the production of damage-induced long non-coding RNAs (dilncRNAs) that engage in DNA-RNA hybrid formation. Depletion of EXOSC10, an exosome catalytic subunit, leads to increased dilncRNA and DNA-RNA hybrid levels. Moreover, the targeting of the ssDNA-binding protein RPA to sites of DNA damage is impaired whereas DNA end resection is hyper-stimulated in EXOSC10-depleted cells. The DNA end resection deregulation is abolished by transcription inhibitors, and RNase H1 overexpression restores the RPA recruitment defect caused by EXOSC10 depletion, which suggests that RNA clearance of newly synthesized dilncRNAs is required for RPA recruitment, controlled DNA end resection and assembly of the homologous recombination machinery.


Subject(s)
DNA Breaks, Double-Stranded , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Homologous Recombination , Replication Protein A/metabolism , DNA/genetics , Exoribonucleases/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Exosomes/metabolism , Gene Knockdown Techniques , HeLa Cells , Humans , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism , Rad51 Recombinase/metabolism , Ribonuclease H/metabolism
6.
Nucleic Acids Res ; 46(22): 11869-11882, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30418607

ABSTRACT

Recent studies suggest that transcription takes place at DNA double-strand breaks (DSBs), that transcripts at DSBs are processed by Drosha and Dicer into damage-induced small RNAs (diRNAs), and that diRNAs are required for DNA repair. However, diRNAs have been mostly detected in reporter constructs or repetitive sequences, and their existence at endogenous loci has been questioned by recent reports. Using the homing endonuclease I-PpoI, we have investigated diRNA production in genetically unperturbed human and mouse cells. I-PpoI is an ideal tool to clarify the requirements for diRNA production because it induces DSBs in different types of loci: the repetitive 28S locus, unique genes and intergenic loci. We show by extensive sequencing that the rDNA locus produces substantial levels of diRNAs, whereas unique genic and intergenic loci do not. Further characterization of diRNAs emerging from the 28S locus reveals the existence of two diRNA subtypes. Surprisingly, Drosha and its partner DGCR8 are dispensable for diRNA production and only one diRNAs subtype depends on Dicer processing. Furthermore, we provide evidence that diRNAs are incorporated into Argonaute. Our findings provide direct evidence for diRNA production at endogenous loci in mammalian cells and give insights into RNA processing at DSBs.


Subject(s)
DEAD-box RNA Helicases/genetics , DNA Repair , DNA, Intergenic/genetics , DNA/genetics , Endodeoxyribonucleases/genetics , RNA/genetics , Ribonuclease III/genetics , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Cell Line , DEAD-box RNA Helicases/metabolism , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Damage , DNA, Intergenic/metabolism , Endodeoxyribonucleases/metabolism , Genetic Loci , HeLa Cells , High-Throughput Nucleotide Sequencing , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism
7.
Hum Mol Genet ; 18(3): 391-404, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-18996920

ABSTRACT

Schizophrenia may arise from subtle abnormalities in brain development due to alterations in the functions of candidate susceptibility genes such as Disrupted-in-schizophrenia 1 (DISC1) and Neuregulin 1 (NRG1). To provide novel insights into the functions of DISC1 in brain development, we mapped the expression of zebrafish disc1 and set out to characterize its role in early embryonic development using morpholino antisense methods. These studies revealed a critical requirement for disc1 in oligodendrocyte development by promoting specification of olig2-positive cells in the hindbrain and other brain regions. Since NRG1 has well-documented roles in myelination, we also analyzed the roles of nrg1 and ErbB signalling in zebrafish brain development and we observed strikingly similar defects to those seen in disc1 morphant embryos. In addition to their effects on oligodendrocyte development, knock-down of disc1 or nrg1 caused near total loss of olig2-positive cerebellar neurones, but caused no apparent loss of spinal motor neurones. These findings suggest that disc1 and nrg1 function in common or related pathways controlling development of oligodendrocytes and neurones from olig2-expressing precursor cells. Like DISC1 and NRG1, OLIG2 and ERBB4 are promising candidate susceptibility genes for schizophrenia. Hence our findings in the zebrafish embryo suggest that hitherto unappreciated neurodevelopmental connections may exist between key human schizophrenia susceptibility genes. These connections could be investigated in Disc1 and Nrg1 mouse models and in genetically defined groups of patients in order to determine whether they are relevant to the pathobiology of schizophrenia. GenBank accession number for Danio rerio disc1: EU273350.


Subject(s)
Body Patterning , Nerve Tissue Proteins/metabolism , Neuregulin-1/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Rhombencephalon/growth & development , Zebrafish Proteins/metabolism , Zebrafish/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Humans , Nerve Tissue Proteins/genetics , Neuregulin-1/genetics , Oligodendrocyte Transcription Factor 2 , Rhombencephalon/embryology , Rhombencephalon/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism , Signal Transduction , Zebrafish/embryology , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...