Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropsychiatr ; : 1-30, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770713

ABSTRACT

OBJECTIVE: To investigate the effects of cannabidiol (CBD) on emotional and cognitive symptoms in rats with intra-nigral 6-hydroxydopamine (6-OHDA) lesions. METHODS: Adult male Wistar rats received bilateral intranigral 6-OHDA infusions and were tested in a battery of behavioral paradigms to evaluate nonmotor symptoms. The brains were obtained to evaluate the effects of CBD on hippocampal neurogenesis. RESULTS: 6-hydroxydopamine-lesioned rats exhibited memory impairments and despair-like behavior in the novelty-suppressed feeding test and forced swim test, respectively. The animals also exhibited dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc), striatum, and ventral tegmental area and a reduction of hippocampal neurogenesis. Cannabidiol decreased dopaminergic neuronal loss in the SNpc, reduced the mortality rate and decreased neuroinflammation in 6-OHDA-lesioned rats. In parallel, CBD prevented memory impairments and attenuated despair-like behavior that were induced by bilateral intranigral 6-OHDA lesions. Repeated treatment with CBD favored the neuronal maturation of newborn neurons in the hippocampus in Parkinsonian rats. CONCLUSION: The present findings suggest a potential beneficial effect of CBD on nonmotor symptoms induced by intra-nigral 6-OHDA infusion in rats.

2.
Neurotox Res ; 41(4): 311-323, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36922461

ABSTRACT

Phosphodiesterase 4 inhibitors (PDE4-I), which selectively increase cyclic adenosine monophosphate (cAMP) levels, have shown neuroprotective effects after several neurological injuries inducing blood-brain barrier (BBB) damage including local/focal cerebral ischemia. The present investigated whether roflumilast confers BBB neuroprotection in the hippocampus after transient global cerebral ischemia (TGCI) in rats. TGCI resulted in whole BBB disruption as measured by the increase of Evans blue (EB) and IgG extravasation, neurodegeneration, and downregulation of claudin-5 and endothelial nitric oxide synthase (eNOS) levels in the CA1 hippocampal subfield of ischemic rats. Roflumilast attenuated BBB disruption and restored the levels of eNOS in the CA1 hippocampal area. Moreover, roflumilast increased the levels of B2 cell lymphoma (BcL-2) and neuron-glial antigen-2 (NG2) in the CA1 subfield after global ischemia in rats. The protective effects of roflumilast against TGCI-induced BBB breakdown might involve preservation of BBB integrity, vascularization and angiogenesis, and myelin repair.


Subject(s)
Brain Ischemia , Ischemic Attack, Transient , Rats , Animals , Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Hippocampus/metabolism
3.
J Ethnopharmacol ; 306: 116176, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36682600

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Trichilia catigua A. Juss (Meliaceae) is used in Brazilian folk medicine to alleviate fatigue and emotional stress and improve memory. Previous studies from our laboratory reported that an ethyl-acetate fraction (EAF) of T. catigua that was given before cerebral ischemia in vivo prevented memory loss and reduced oxidative stress and neuroinflammation. Despite the value of these findings of a neuroprotective effect of T. catigua, treatment that was given immediately before or immediately after ischemia limits its clinical relevance. Thus, unknown is whether T. catigua possesses a specific time window of efficacy (TWE) when administered postischemia. AIM OF THE STUDY: Given continuity to previous studies, we investigated whether an EAF of T. catigua maintains its neuroprotective properties if treatment begins at different time windows of efficacy after ischemia. We also evaluated, for the first time, whether T. catigua possesses neuroplasticity/neurotrophic properties. MATERIAL AND METHODS: Rats were subjected to transient global brain ischemia (TGCI) and then given a single dose of the EAF (400 mg/kg) or vehicle (1 ml/kg) orally 1, 4, or 6 h postischemia. The levels of protein PCG, GSH, and GSSG, and activity of SOD and CAT were assayed as markers of oxidative stress on the day after ischemia. In another experiment, naive rats underwent spatial learning training in a radial maze task and then subjected to TGCI. Delayed treatment with the EAF began 4 or 6 h later and continued for 7 days. Retrograde memory performance was assessed 10, 17, and 24 days postischemia. Afterward, brains were examined for neurodegeneration and neuronal dendritic morphology in the hippocampus and cerebral cortex. Another group received the EAF at 4 h of reperfusion, and 4 days later their brains were examined for GFAP and Iba-1 immunoreactivity. Lastly, ischemic rats received the EAF 4 h after ischemia and neural plasticity-related proteins, BDNF, SYN, PSD 95, and NeuN were measured in the hippocampus 7 and 14 days after ischemia. RESULTS: A single EAF administration 1, 4, or 6 h postischemia alleviated oxidative stress that was caused by ischemia, expressed as a reduction of the amount of the PCG and GSSG, normalization of the GSH/GSSG ratio, and the restoration of SOD activity. Ischemia caused the persistent loss of memory (i.e., amnesia), an outcome that was consistently ameliorated by treatment with the EAF that was initiated 4 or 6 h postischemia. The 4 h delay in EAF treatment positively impacted dendritic morphology in neurons that survived ischemia. TGCI reduced BDNF, SYN, PSD-95, and NeuN protein levels in the hippocampus and cerebral cortex. The EAF normalized SYN and PSD-95 protein levels. Ischemia-induced neurodegeneration and glial cell activation were not prevented by EAF treatment. CONCLUSION: The present study corroborates prior data that demonstrated the neuroprotective potential of T. catigua and extends these data by showing that the delayed administration of EAF postischemia effectively prevented memory impairment and decreased oxidative stress, dendritic deterioration, and synaptic protein loss within a TWE that ranged from 1 to 6 h. This specific TWE in preclinical research may have clinical relevance by suggesting the possible utility of this plant for the development of neuroprotective strategies in the setting of ischemic brain diseases. Another innovative finding of the present study was the possible neurotrophic/neuroplastic properties of T. catigua.


Subject(s)
Brain Ischemia , Meliaceae , Neuroprotective Agents , Rats , Animals , Brain-Derived Neurotrophic Factor/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Glutathione Disulfide/therapeutic use , Plant Extracts/pharmacology , Brain Ischemia/drug therapy , Oxidative Stress , Cerebral Infarction/drug therapy , Hippocampus , Memory Disorders/drug therapy , Acetates/pharmacology , Superoxide Dismutase/metabolism , Neuronal Plasticity , Neuroprotective Agents/pharmacology
4.
Mol Neurobiol ; 58(10): 5338-5355, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34302281

ABSTRACT

Evidence for the clinical use of neuroprotective drugs for the treatment of cerebral ischemia (CI) is still greatly limited. Spatial/temporal disorientation and cognitive dysfunction are among the most prominent long-term sequelae of CI. Cannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa that exerts neuroprotective effects against experimental CI. The present study investigated possible neuroprotective mechanisms of action of CBD on spatial memory impairments that are caused by transient global cerebral ischemia (TGCI) in rats. Hippocampal synaptic plasticity is a fundamental mechanism of learning and memory. Thus, we also evaluated the impact of CBD on neuroplastic changes in the hippocampus after TGCI. Wistar rats were trained to learn an eight-arm aversive radial maze (AvRM) task and underwent either sham or TGCI surgery. The animals received vehicle or 10 mg/kg CBD (i.p.) 30 min before surgery, 3 h after surgery, and then once daily for 14 days. On days 7 and 14, we performed a retention memory test. Another group of rats that received the same pharmacological treatment was tested in the object location test (OLT). Brains were removed and processed to assess neuronal degeneration, synaptic protein levels, and dendritic remodeling in the hippocampus. Cannabidiol treatment attenuated ischemia-induced memory deficits. In rats that were subjected to TGCI, CBD attenuated hippocampal CA1 neurodegeneration and increased brain-derived neurotrophic factor levels. Additionally, CBD protected neurons against the deleterious effects of TGCI on dendritic spine number and the length of dendritic arborization. These results suggest that the neuroprotective effects of CBD against TGCI-induced memory impairments involve changes in synaptic plasticity in the hippocampus.


Subject(s)
Cannabidiol/therapeutic use , Hippocampus/drug effects , Ischemic Attack, Transient/prevention & control , Neuronal Plasticity/drug effects , Neuroprotection/drug effects , Synapses/drug effects , Animals , Cannabidiol/pharmacology , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Ischemic Attack, Transient/metabolism , Ischemic Attack, Transient/pathology , Male , Neuronal Plasticity/physiology , Neuroprotection/physiology , Organ Culture Techniques , Rats , Rats, Wistar , Spatial Memory/drug effects , Spatial Memory/physiology , Synapses/metabolism , Synapses/pathology
5.
Exp Neurol ; 300: 188-200, 2018 02.
Article in English | MEDLINE | ID: mdl-29162435

ABSTRACT

Deficiencies in adult hippocampal neurogenesis have been suggested to be a possible pathophysiological mechanism that underlies depressive symptoms that are often observed in patients with Parkinson's disease (PD). Pioglitazone, a selective peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, has been shown to exert antiinflammatory and antidepressant effects and modulate neural plasticity in several neurodegenerative disorders. The present study investigated the effects of pioglitazone on depressive phenotypes and adult hippocampal neurogenesis in a rat model of PD that was induced by bilateral 6-hydroxydopamine (6-OHDA) infusions in the substantia nigra pars compact (SNpc). Rats with SNpc and ventral tegmental area (VTA) neurodegeneration exhibited despair-like behavior, concomitant with persistent microglial activation in the hippocampus. Pioglitazone reduced the rate of mortality and attenuated microglial activation in the early phase of 6-OHDA-induced nigral lesions. Pioglitazone exerted antidepressant-like effects and increased the survival of neurons in the hippocampus in rats with nigral lesions. These results indicate that pioglitazone exerts neuroprotective effects by facilitating hippocampal neurogenesis in 6-OHDA-lesioned rats, which might contribute to its antidepressant-like effect.


Subject(s)
Depression/drug therapy , Hippocampus/drug effects , Neurogenesis/drug effects , Oxidopamine/toxicity , Parkinson Disease, Secondary/drug therapy , Thiazolidinediones/therapeutic use , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/pathology , Disease Models, Animal , Hippocampus/pathology , Male , Mortality/trends , Neurogenesis/physiology , Parkinson Disease, Secondary/mortality , Parkinson Disease, Secondary/pathology , Pioglitazone , Random Allocation , Rats , Thiazolidinediones/pharmacology
6.
Article in English | MEDLINE | ID: mdl-26187374

ABSTRACT

Therapeutic effects of antidepressants and atypical antipsychotics may arise partially from their ability to stimulate neurogenesis. Cannabidiol (CBD), a phytocannabinoid present in Cannabis sativa, presents anxiolytic- and antipsychotic-like effects in preclinical and clinical settings. Anxiolytic-like effects of repeated CBD were shown in chronically stressed animals and these effects were parallel with increased hippocampal neurogenesis. However, antidepressant-like effects of repeated CBD administration in non-stressed animals have been scarcely reported. Here we investigated the behavioral consequences of single or repeated CBD administration in non-stressed animals. We also determined the effects of CBD on cell proliferation and neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ). Single CBD 3mg/kg administration resulted in anxiolytic-like effect in mice submitted to the elevated plus maze (EPM). In the tail suspension test (TST), single or repeated CBD administration reduced immobility time, an effect that was comparable to those of imipramine (20 mg/kg). Moreover, repeated CBD administration at a lower dose (3 mg/kg) increased cell proliferation and neurogenesis, as seen by an increased number of Ki-67-, BrdU- and doublecortin (DCX)-positive cells in both in DG and SVZ. Despite its antidepressant-like effects in the TST, repeated CBD administration at a higher dose (30 mg/kg) decreased cell proliferation and neurogenesis in the hippocampal DG and SVZ. Our findings show a dissociation between behavioral and proliferative effects of repeated CBD and suggest that the antidepressant-like effects of CBD may occur independently of adult neurogenesis in non-stressed Swiss mice.


Subject(s)
Cannabidiol/administration & dosage , Cell Proliferation/drug effects , Emotions/drug effects , Neurogenesis/drug effects , Psychotropic Drugs/administration & dosage , Animals , Anxiety/drug therapy , Anxiety/physiopathology , Cell Proliferation/physiology , Dentate Gyrus/drug effects , Dentate Gyrus/physiology , Dose-Response Relationship, Drug , Doublecortin Domain Proteins , Doublecortin Protein , Emotions/physiology , Imipramine/pharmacology , Ki-67 Antigen/metabolism , Male , Mice , Microtubule-Associated Proteins/metabolism , Motor Activity/drug effects , Motor Activity/physiology , Neurogenesis/physiology , Neuropeptides/metabolism , Random Allocation , Stem Cell Niche/drug effects , Stem Cell Niche/physiology
7.
Neurotox Res ; 26(4): 307-16, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24532152

ABSTRACT

The present study investigated whether cannabidiol (CBD), a major non-psychoactive constituent of marijuana, protects against hippocampal neurodegeneration and cognitive deficits induced by brain ischemia in adult mice. Male Swiss mice were subjected to a 17 min of bilateral common carotid artery occlusion (BCCAO) and tested in the Morris water maze 7 days later. CBD (3, 10, and 30 mg/kg) was administered 30 min before and 3, 24, and 48 h after BCCAO. After behavioral testing, the brains were removed and processed to evaluate hippocampal cell survival and degeneration using Nissl staining and FluoroJade C histochemistry, respectively. Astroglial response was examined using immunohistochemistry for glial fibrillary acidic protein (GFAP). CBD (3-30 mg/kg) improved spatial learning performance in BCCAO mice. The Nissl and FJC staining results showed a decrease in hippocampal neurodegeneration after CBD (10 and 30 mg/kg) treatment. GFAP immunoreactivity was also decreased in ischemic mice treated with CBD (30 mg/kg). These findings suggest a protective effect of CBD on neuronal death induced by ischemia and indicate that CBD might exert beneficial therapeutic effects in brain ischemia. The mechanisms that underlie the neuroprotective effects of CBD in BCCAO mice might involve the inhibition of reactive astrogliosis.


Subject(s)
Cannabidiol/pharmacology , Carotid Artery Diseases/drug therapy , Cell Death/drug effects , Cognition Disorders/drug therapy , Hippocampus/drug effects , Neuroprotective Agents/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/pathology , Astrocytes/physiology , Carotid Artery Diseases/complications , Carotid Artery Diseases/pathology , Carotid Artery Diseases/physiopathology , Carotid Artery, Common , Cell Death/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cognition Disorders/etiology , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/pathology , Hippocampus/physiopathology , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Neurons/drug effects , Neurons/pathology , Neurons/physiology , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...