Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chemosphere ; 204: 290-293, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29665531

ABSTRACT

While biodegradation of chemically dispersed oil has been well documented, only a few studies have focused on the degradation of the dispersant compounds themselves. The objective of this study was to determine the biodegradation of dispersant surfactants in cold seawater, relevant for deep sea or Arctic conditions. Biotransformation of the surfactants dioctyl-sodium sulfosuccinate (DOSS), Tween 80, Tween 85, and α/ß-ethylhexylsulfosuccinate (EHSS, expected DOSS hydrolysis product) in the commercial dispersants Corexit 9500, Dasic Slickgone NS and Finasol OSR52 were determined. The biotransformation studies of the surfactants were performed in natural seawater at 5 °C over a period of 54 days without oil present. The surfactants were tested at concentrations of 1, 5, and 50 mg/L, the lower concentration being as close as possible to expected field concentrations. Experiments with dispersants concentrations of 1 mg/L resulted in rapid biotransformation of Tween 80 and Tween 85, with depletion after 8 days, while DOSS showed rapid biotransformation after a lag period of 16 days. The degradation half-life of DOSS increased from 4.1 days to >500 days as Corexit 9500 concentrations went from 1 mg/L to 50 mg/L, emphasizing the importance of performing experiments at dispersant concentrations as close as possible to environmentally relevant concentrations. EHSS showed limited degradation compared to other surfactants. This study shows that the surfactants DOSS, Tween 80 and Tween 85 in the three chemical dispersants studied are biodegradable in cold seawater, particularly in environmentally relevant concentrations.


Subject(s)
Biodegradation, Environmental , Petroleum Pollution/analysis , Seawater/chemistry , Surface-Active Agents/chemistry , Water Pollutants, Chemical/analysis
2.
J Toxicol Environ Health A ; 77(9-11): 495-505, 2014.
Article in English | MEDLINE | ID: mdl-24754387

ABSTRACT

The objectives of this study were to (1) determine the acute toxicity of selected shoreline washing agents (SWA) and dispersants, and (2) assess interspecies differences in sensitivity to the products. Eight shoreline washing agents (Hela saneringsvæske, Bios, Bioversal, Absorrep K212, and Corexit 9580) and chemical dispersants (Corexit 9500, Dasic NS, and Gamlen OD4000) were tested on five marine species, algae Skeletonema costatum, planktonic copepod species Acartia tonsa (temperate species), Calanus finmarchicus (boreal species) and Calanus glacialis (Arctic species), and benthic amphipod Corophium volutator. For most products, A. tonsa was the most sensitive species, whereas C. volutator was the least sensitive; however, these species were exposed through different media (water/sediment). In general, all copepod species displayed a relatively similar sensitivity to all products. However, A. tonsa was somewhat more sensitive than other copepods to most of the tested products. Thus, A. tonsa appears to be a candidate species for boreal and Arctic copepods for acute toxicity testing, and data generated on this species may be used as to provide conservative estimates. The benthic species (C. volutator) had a different sensitivity pattern relative to pelagic species, displaying higher sensitivity to solvent-based SWA than to water-based SWA. Comparing product toxicity, the dispersants were in general most toxic while the solvent-based SWA were least toxic to pelagic species.


Subject(s)
Lipids/toxicity , Petroleum Pollution/analysis , Surface-Active Agents/toxicity , Toxicity Tests, Acute , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Amphipoda/metabolism , Animals , Arctic Regions , Copepoda/classification , Copepoda/drug effects , Copepoda/metabolism , Diatoms/drug effects , Diatoms/metabolism , Ecotoxicology , Environmental Restoration and Remediation
3.
Antonie Van Leeuwenhoek ; 96(4): 423-39, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19533408

ABSTRACT

Recent studies have indicated that oil reservoirs harbour diverse microbial communities. Culture-dependent and culture-independent methods were used to evaluate the microbial diversity in produced water samples of the Ekofisk oil field, a high temperature, and fractured chalk reservoir in the North Sea. DGGE analyses of 16S rRNA gene fragments were used to assess the microbial diversity of both archaeal and bacterial communities in produced water samples and enrichment cultures from 4 different wells (B-08, X-08, X-18 and X-25). Low diversity communities were found when 16S rDNA libraries of bacterial and archaeal assemblages were generated from total community DNA obtained from produced water samples and enrichment cultures. Sequence analysis of the clones indicated close matches to microbes associated with high-temperature oil reservoirs or other similar environments. Sequences were found to be similar to members of the genera Thermotoga, Caminicella, Thermoanaerobacter, Archaeoglobus, Thermococcus, and Methanobulbus. Enrichment cultures obtained from the produced water samples were dominated by sheathed rods. Sequence analyses of the cultures indicated predominance of the genera Petrotoga, Arcobacter, Archaeoglobus and Thermococcus. The communities of both produced water and enrichment cultures appeared to be dominated by thermophilic fermenters capable of reducing sulphur compounds. These results suggest that the biochemical processes in the Ekofisk chalk reservoir are similar to those observed in high-temperature sandstone reservoirs.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Petroleum/microbiology , Archaea/genetics , Archaea/growth & development , Bacteria/genetics , Bacteria/growth & development , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Electrophoresis, Polyacrylamide Gel/methods , Genes, rRNA , Molecular Sequence Data , North Sea , Nucleic Acid Denaturation , Phylogeny , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
4.
Biodegradation ; 17(1): 71-82, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16453173

ABSTRACT

In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 degrees C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C(10)-C(36) n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5 degrees C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0 degree C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0 degree C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5 degrees C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures < or =5 degrees C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing point.


Subject(s)
Petroleum/metabolism , Proteobacteria/metabolism , Seawater/microbiology , Water Microbiology , Water Pollutants, Chemical/metabolism , Arctic Regions , Biodegradation, Environmental , Hydrocarbons/metabolism , Oils , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S , Seawater/chemistry , Temperature
5.
Biodegradation ; 15(5): 337-46, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15523916

ABSTRACT

The objective of this study was to establish methods for controlled studies of hydrocarbon depletion from thin oil films in cold natural seawater, and to determine biotransformation in relation to other essential depletion processes. Mineral oil was immobilized on the surface of hydrophobic Fluortex fabrics and used for studies of microbial biodegradation in an experimental seawater flow-through system at low temperatures (5.9-7.4 degrees C) during a test period of 42 days. The seawater was collected from a depth of 90 m, and microbial characterization by epifluorescence microscopy, fluorescence in situ hybridization, and most-probable number analysis showed relatively larger fractions of archaea and oil-degrading microbes than in the corresponding surface water. Chemical analysis of hydrocarbons attached to the fabrics during the test period showed that n-alkanes (C10-C36) were decreased by 98% after 21 days, while naphthalenes were depleted by 99-100% during the same period. At the end of the period 4-5 ring polyaromatic hydrocarbon (PAH) compounds were removed by 82% from the fabrics. Analysis of the recalcitrant pentacyclic triterpane C30 17alpha(H),21beta(H)-hopane showed that the oil remained adsorbed to the fabrics during the test period. Comparison of depletion analysis with calculation of hydrocarbon dissolution in a flow-through system indicated that naphthalenes and smaller PAH compounds (alkylated 2-ring and 3-ring compounds) were removed from the fabrics by dissolution. The data further implied that depletion of n-alkanes and 4-5 ring PAH hydrocarbons were the result of biotransformation processes. PCR amplification of bacterial 16S rRNA genes from microbes adhering on the immobilized oil surfaces showed the dominance of a few bands when analysed in denaturing gradient gel electrophoresis (DGGE). Sequence analysis of DGGE bands revealed phylogenetic affiliation to the alpha- and gamma-subdivisions of proteobacteria and to the Chloroflexus-Flavobacterium-Bacteroides group.


Subject(s)
Hydrocarbons/metabolism , Petroleum/metabolism , Water Pollutants, Chemical/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Base Sequence , Biodegradation, Environmental , Biotransformation , Cold Temperature , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Hydrocarbons/pharmacokinetics , Kinetics , Mineral Oil , Seawater , Solubility , Water Microbiology , Water Pollutants, Chemical/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...