Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 13015, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34155322

ABSTRACT

Heterojunction photodetector based on reduced graphene oxide (rGO) has been realized using a spin coating technique. The electrical and optical characterization of bare GO and thermally reduced GO thin films deposited on glass substrate has been carried out. Ultraviolet-visible-infrared transmittance measurements of the GO and rGO thin films revealed broad absorption range, while the absorbance analysis evaluates rGO band gap of about 2.8 eV. The effect of GO reduction process on the photoresponse capability is reported. The current-voltage characteristics and the responsivity of rGO/n-Si based device have been investigated using laser diode wavelengths from UV up to IR spectral range. An energy band diagram of the heterojunction has been proposed to explain the current versus voltage characteristics. The device demonstrates a photoresponse at a broad spectral range with a maximum responsivity and detectivity of 0.20 A/W and 7 × 1010 cmHz/W, respectively. Notably, the obtained results indicate that the rGO based device can be useful for broadband radiation detection compatible with silicon device technology.

2.
Sensors (Basel) ; 19(19)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557804

ABSTRACT

The magneto-mechanical behaviour of structural steel specimens stressed up to the plastic deformation stage was investigated using a 2nd order gradiometer based on Giant Magneto Resistive (GMR) sensors. The correlation between the gradient of the magnetization and the dislocation density before the crack initiation inside the test material was reported. The capability of the GMR scanning sensor to detect the residual magnetization due to the tensile stress with a non-invasive technique was demonstrated.

3.
Sci Rep ; 7(1): 522, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28364123

ABSTRACT

The origin of eumelanin optical properties remains a formidable conundrum preventing a detailed understanding of the complex photo-protective role of these widespread natural pigments and the rational design of innovative bioinspired materials for optoelectronic applications. Here we report the unusual kinetic and thickness-dependent evolution of the optical properties of black eumelanin polymers generated by spontaneous aerial polymerization of 5,6-dihydroxyindole (DHI) thin films (0.1-1 µm), consistent with peculiar solid state reorganization mechanisms governing broadband absorption. The complete reversal of eumelanin UV-visible transmittance spectrum curvature on passing from 0.2 to 0.5 µm thick films, the marked increase in visible extinction coefficients with increasing film thickness and the higher UV extinction coefficients in slowly vs. rapidly generated polymers concur to support distinct dynamic regimes of solid-state molecular reorganization at the nanoscale level and to do affect the development of broadband visible absorption. Solid state control of molecular reorganization disclosed herein may delineate new rational strategies for tuning optical properties in eumelanin thin films for optoelectronic applications.

4.
Beilstein J Nanotechnol ; 8: 21-27, 2017.
Article in English | MEDLINE | ID: mdl-28144561

ABSTRACT

In this work we present a novel route to produce a graphene-based film on a polymer substrate. A transparent graphite colloidal suspension was applied to a slat of poly(methyl methacrylate) (PMMA). The good adhesion to the PMMA surface, combined with the shear stress, allows a uniform and continuous spreading of the graphite nanocrystals, resulting in a very uniform graphene multilayer coating on the substrate surface. The fabrication process is simple and yields thin coatings characterized by high optical transparency and large electrical piezoresitivity. Such properties envisage potential applications of this polymer-supported coating for use in strain sensing. The electrical and mechanical properties of these PMMA/graphene coatings were characterized by bending tests. The electrical transport was investigated as a function of the applied stress. The structural and strain properties of the polymer composite material were studied under stress by infrared thermography and micro-Raman spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...