Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Primatol ; 82(12): e23199, 2020 12.
Article in English | MEDLINE | ID: mdl-32990997

ABSTRACT

Vision is a major sense for Primates and the ability to perceive colors has great importance for the species ecology and behavior. Visual processing begins with the activation of the visual opsins in the retina, and the spectral absorption peaks are highly variable among species. In most Primates, LWS/MWS opsins are responsible for sensitivity to long/middle wavelengths within the visible light spectrum, and SWS1 opsins provide sensitivity to short wavelengths, in the violet region of the spectrum. In this study, we aimed to investigate the genetic variation on the sws1 opsin gene of New World monkeys (NWM) and search for amino acid substitutions that might be associated with the different color vision phenotypes described for a few species. We sequenced the exon 1 of the sws1 opsin gene of seven species from the families Callitrichidae, Cebidae, and Atelidae, and searched for variation at the spectral tuning sites 46, 49, 52, 86, 90, 93, 114, 116, and 118. Among the known spectral tuning sites, only residue 114 was variable. To investigate whether other residues have a functional role in the SWS1 absorption peak, we performed computational modeling of wild-type SWS1 and mutants A50I and A50V, found naturally among the species investigated. Although in silico analysis did not show any visible effect caused by these substitutions, it is possible that interactions of residue 50 with other sites might have some effect in the spectral shifts in the order of ~14 nm, found among the NWM. We also performed phylogenetic reconstruction of the sws1 gene, which partially recovered the species phylogeny. Further studies will be important to uncover the mutations responsible for the phenotypic variability of the SWS1 of NWM, and how spectral tuning may be associated with specific ecological features such as preferred food items and habitat use.


Subject(s)
Cone Opsins/genetics , Genetic Variation , Animals , Phylogeny , Platyrrhini , Sequence Analysis, DNA/veterinary
2.
Am J Primatol ; 81(3): e22963, 2019 03.
Article in English | MEDLINE | ID: mdl-30809840

ABSTRACT

Most species of New World primates have an unusual color vision pattern that can affect an individual's ability to detect food. Whereas males can only be dichromatic, females can be either dichromatic or trichromatic. Trichromats are expected to have an advantage in detecting conspicuous food whereas dichromats should be better at locating cryptic resources. Here we aimed to understand how color vision phenotype influences insect foraging by five groups of common marmosets living in a semiarid environment. We recorded insect predation events, noting morphotype and color of the captured insect, and the substrate from which it was captured. Color modeling suggested that, for all values of chromatic contrast resulting from comparing the measured insect-substrate pairs, trichromats outperformed dichromats. Females showed an overall higher insect capture rate than males. Females also showed a higher capture rate of conspicuous insects but there was no sex difference for the capture of cryptic insects. When we compared only dichromatic individuals there was no difference between sexes. These findings suggest that differences found in capture rate related not only to sex but also to visual polymorphism and that the latter is a crucial factor determining insect capture rate in common marmosets. Nevertheless, these results should be interpreted with caution because of the small number (three) of dichromat females and the unknown phenotype of the remaining females. Our results support the balancing selection hypothesis, suggesting that the advantage of one phenotype over the other may depend on environmental circumstances. This hypothesis has recently been considered as the most plausible for the maintenance of visual polymorphism in New World primates.


Subject(s)
Appetitive Behavior/physiology , Callithrix/physiology , Color Vision , Animals , Brazil , Color , Female , Insecta , Male , Sex Characteristics
3.
J Opt Soc Am A Opt Image Sci Vis ; 35(4): B92-B99, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29603930

ABSTRACT

It has been previously demonstrated that electroretinography (ERG) elicited by heterochromatically modulated stimuli can be used for objective determination of color vision type. Color vision of trichromatic, deuteranopic, and protanopic participants was psychophysically assessed by the Cambridge Color Test and confirmed genetically. ERG responses to red and green lights modulating in counterphase at 12 and 36 Hz were recorded, while the fraction of red modulation was varied. At 36 Hz (and second harmonics at 12 Hz), the responses were minimal at red fractions that differed significantly in protanopes. At 12 Hz (fundamental component), the responses of the trichromats differed significantly compared to those of the dichromats. An improved protocol shows that the three subject groups can be separated with no overlap.


Subject(s)
Color Vision Defects/diagnosis , Color Vision/physiology , Retinal Cone Photoreceptor Cells/physiology , Adult , Chromosomes, Human, X/genetics , Color Vision Defects/genetics , Color Vision Defects/physiopathology , Cone Opsins/genetics , Electroretinography , Female , Humans , Male , Polymerase Chain Reaction , Young Adult
4.
Front Psychol ; 8: 1127, 2017.
Article in English | MEDLINE | ID: mdl-28713324

ABSTRACT

Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by impairments in social/communication abilities and restricted behaviors. The present study aims to examine color vision discrimination in ASD children and adolescents without intellectual disability. The participants were also subdivided in order to compare color vision thresholds of autistic participants and those who achieved diagnostic criteria for Asperger Syndrome (AS). Nine subjects with autism, 11 participants with AS and 36 typically developing children and adolescents participated in the study. Color vision was assessed by the Cambridge Color Test (CCT). The Trivector protocol was administered to determine color discrimination thresholds along the protan, deutan, and tritan color confusion lines. Data from ASD participants were compared to tolerance limits for 90% of the population with 90% probability obtained from controls thresholds. Of the 20 ASD individuals examined, 6 (30%) showed color vision losses. Elevated color discrimination thresholds were found in 3/9 participants with autism and in 3/11 AS participants. Diffuse and tritan deficits were found. Mechanisms for chromatic losses may be either at the retinal level and/or reflect reduced cortical integration.

5.
Brain Behav Evol ; 84(3): 197-213, 2014.
Article in English | MEDLINE | ID: mdl-25342570

ABSTRACT

The diurnal Dipsadidae snakes Philodryas olfersii and P. patagoniensis are closely related in their phylogeny but inhabit different ecological niches. P. olfersii is arboreal, whereas P. patagoniensis is preferentially terrestrial. The goal of the present study was to compare the density and topography of neurons, photoreceptors, and cells in the ganglion cell layer in the retinas of these two species using immunohistochemistry and Nissl staining procedures and estimate the spatial resolving power of their eyes based on the ganglion cell peak density. Four morphologically distinct types of cones were observed by scanning electron microscopy, 3 of which were labeled with anti-opsin antibodies: large single cones and double cones labeled by the antibody JH492 and small single cones labeled by the antibody JH455. The average densities of photoreceptors and neurons in the ganglion cell layer were similar in both species (∼10,000 and 7,000 cells·mm(-2), respectively). The estimated spatial resolving power was also similar, ranging from 2.4 to 2.7 cycles·degree(-1). However, the distribution of neurons had different specializations. In the arboreal P. olfersii, the isodensity maps had a horizontal visual streak, with a peak density in the central region and a lower density in the dorsal retina. This organization might be relevant for locomotion and hunting behavior in the arboreal layer. In the terrestrial P. patagoniensis, a concentric pattern of decreasing cell density emanated from an area centralis located in the naso-ventral retina. Lower densities were observed in the dorsal region. The ventrally high density improves the resolution in the superior visual field and may be an important adaptation for terrestrial snakes to perceive the approach of predators from above.


Subject(s)
Retinal Cone Photoreceptor Cells/physiology , Retinal Cone Photoreceptor Cells/ultrastructure , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/ultrastructure , Visual Acuity/physiology , Animals , Cell Count , Snakes/anatomy & histology , Snakes/physiology , Species Specificity
6.
Vision Res ; 50(1): 99-106, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19883678

ABSTRACT

We investigated the color vision pattern in Cebus apella monkeys by means of electroretinogram measurements (ERG) and genetic analysis. Based on ERG we could discriminate among three types of dichromatic males. Among females, this classification is more complex and requires additional genetic analysis. We found five among 10 possible different phenotypes, two trichromats and three dichromats. We also found that Cebus present a new allele with spectral peak near 552nm, with the amino acid combination SFT at positions 180, 277 and 285 of the opsin gene, in addition to the previously described SYT, AFT and AFA alleles.


Subject(s)
Color Perception , Retinal Cone Photoreceptor Cells/chemistry , Retinal Pigments/analysis , Retinal Pigments/genetics , Alleles , Animals , Cebus , Electroretinography , Female , Male , Opsins/genetics , Phenotype , Polymorphism, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...