Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276418

ABSTRACT

The plate heat exchanger (PHE) is a component that provides heat to be transferred from hot water to domestic cold water without mixing them with high efficiency. Over the lifetime of the PHE, cyclic pressures act on the brazing points and the plates, and this may lead to fatigue failure. The fatigue behaviour of the PHE, designed using copper-brazed 316L stainless steel, was investigated in this study. First, the fatigue tests under the load ratio R = 0.1 were performed on the Vibrophore 100 testing machine to obtain the S-N curve of the analysed brazed joint. Based on the obtained experimental results, an appropriate material model of the analysed brazed joint has been created, which was validated with numerical calculation in the framework of a program code Ansys. A validated material model was then used for the subsequent numerical analysis of PHE. In order to carry out a numerical calculation using the finite element method (FEM), a three-dimensional model of the heat exchanger was created based on the previous scanning of PHE-geometry. Thereafter, the geometry was parameterised, which allowed us to perform parametric simulations (monitoring different responses depending on the input geometry). Numerical simulations were carried out in the framework of the Ansys 2023-R1 software, whereby the obtained results were analysed, and the responses were appropriately characterised according to previously determined load cases.

2.
Materials (Basel) ; 16(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37374549

ABSTRACT

This study presents a comprehensive analysis of different coating materials on the POM substrate. Specifically, it investigated physical vapour deposition (PVD) coatings of aluminium (Al), chromium (Cr), and chromium nitride (CrN) of three various thicknesses. The deposition of Al was accomplished through a three-step process, particularly plasma activation, metallisation of Al by magnetron sputtering, and plasma polymerisation. The deposition of Cr was attained using the magnetron sputtering technique in a single step. For the deposition of CrN, a two-step process was employed. The first step involved the metallisation of Cr using magnetron sputtering, while the second step involved the vapour deposition of CrN, obtained through the reactive metallisation of Cr and nitrogen using magnetron sputtering. The focus of the research was to conduct comprehensive indentation tests to obtain the surface hardness of the analysed multilayer coatings, SEM analyses to examine surface morphology, and thorough adhesion analyses between the POM substrate and the appropriate PVD coating.

3.
Materials (Basel) ; 16(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37109786

ABSTRACT

The aluminium alloy AA 6086 attains the highest room temperature strength among Al-Mg-Si alloys. This work studies the effect of Sc and Y on the formation of dispersoids in this alloy, especially L12-type ones, which can increase its high-temperature strength. A comprehensive investigation was carried out using light microscopy (LM), scanning (SEM), and transmission (TEM) electron microscopy, energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dilatometry to obtain the information regarding the mechanisms and kinetics of dispersoid formation, particularly during isothermal treatments. Sc and Y caused the formation of L12 dispersoids during heating to homogenization temperature and homogenization of the alloys, and during isothermal heat treatments of the as-cast alloys (T5 temper). The highest hardness of Sc and (Sc + Y) modified alloys was attained by heat-treating alloys in the as-cast state in the temperature range between 350 °C and 450 °C (via T5 temper).

4.
Polymers (Basel) ; 14(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36365742

ABSTRACT

A comprehensive experimental investigation of the wear behaviour of coated spur polymer gears made of POM is performed in this study. Three different thicknesses of aluminium (Al) coatings were investigated and deposited by the Physical Vapour Deposition (PVD) process. The Al coating was deposited in three steps: By plasma activation, metallisation of the aluminium by the magnetron sputtering process, and plasma polymerisation. The wear of the gears was tested on an in-house developed testing rig for different torques (16, 20, and 24 Nm) and a rotational speed of 1000 rpm. The duration of the experiments was set to 13 h, when the tooth thickness and, consequently, the wear of the tooth flank were recorded. The experimental results showed that the influence of metallisation with aluminium surface coatings on the wear behaviour of the analysed polymer gear is not significantly important. The results also showed that the gears with a thicker aluminium coating showed greater wear than gears with a thinner coating or even without a coating. This is probably due to the fact that the aluminium particles that started to deviate during gear operation represented the abrasive material, which led to the faster wear of the contacting surfaces of the meshing gear flanks.

5.
Polymers (Basel) ; 13(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34685347

ABSTRACT

A comprehensive experimental investigation of the wear behaviour of coated spur polymer gears made of POM is performed in this study. The three physical vapour deposition (PVD) coatings investigated were aluminium (Al), chromium (Cr), and chromium nitrite (CrN). Al was deposited in three process steps: By plasma activation, metallisation of Al by the magnetron sputtering process, and by plasma polymerisation. Cr deposition was performed in only one step, namely, the metallization of Cr by the magnetron sputtering process. The deposition of CrN was carried out in two steps: the first involved the metallization of Cr by the magnetron sputtering process while the second step, vapour deposition, involved the reactive metallisation of Cr with nitrogen, also by the magnetron sputtering process. The gears were tested on an in-house developed testing rig for different torques (16, 20, 24 and 30 Nm) and rotational speed of 1000 rpm. The duration of the experiments was set to 13 h, when the tooth thickness, and, consequently, the wear of the tooth flank was recorded. The experimental results showed that the influence of metallisation with aluminium, chromium, and chromium nitrite surface coatings on the wear behaviour of the analysed polymer gear is not significant. This is probably due to the fact that the analysed coatings were, in all cases, very thin (less than 500 nm), and therefore did not influence the wear resistance significantly. In that respect, an additional testing using thicker coatings should be applied in the further research work.

6.
Microsc Microanal ; 19(5): 1308-16, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23773577

ABSTRACT

This work studied the phases in the Al corner of the Al-Mn-Be phase diagram in the as-cast state and heat-treated conditions. Metallographic investigations, X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy were used for identifying the phases. The Be contents in the identified phases were precisely determined using Auger electron spectroscopy. The results indicated that Al6Mn does not dissolve Be, whilst λ-Al4Mn dissolves up to 7 at.% Be. The average composition of the T phase, which is normally designated as Al15Mn3Be2, was 72 at.% Al, 19 at.% Mn, and 9 at.% Be. The phase with the nominal composition Be4AlMn contained more Al than Mn. The atomic ratio Al:Mn was between 1.3:1 and 2:1. The hexagonal Be-rich phase did not dissolve any Al and Mn. The icosahedral quasicrystalline (IQC) phase contained up to 45 at.% Be. The compositions of T phase, λ-Al4Mn, IQC, and Be4AlMn may vary, however, the ratio (Al + Be):Mn remained constant, and was close either to four or six indicating substitution of Al atoms with Be atoms in these phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...