Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 3): 328-331, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32148870

ABSTRACT

The title compound represents the thallium(I) salt of a substituted 1,2,5-oxa-diazole, [Tl(C3H3N4O3)] n , with amino- and hydroxamate groups in the 4- and 3- positions of the oxa-diazole ring, respectively. In the crystal, the deprotonated hydroxamate group represents an inter-mediate between the keto/enol tautomers and forms a five-membered chelate ring with the thallium(I) cation. The coordination sphere of the cation is augmented to a distorted disphenoid by two monodentately binding O atoms from two adjacent anions, leading to the formation of zigzag chains extending parallel to the b axis. The cohesion within the chains is supported by π-π stacking [centroid-centroid distance = 3.746 (3) Å] and inter-molecular N-H⋯N hydrogen bonds.

2.
Inorg Chem ; 57(10): 6076-6083, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29741382

ABSTRACT

A pentanuclear CuII5-hydroxo cluster possessing an unusual linear-shaped configuration was formed and crystallized under hydrothermal conditions as a result of the unique cooperation of bridging 1,2,4-triazole ligand ( trans-1,4-cyclohexanediyl-4,4'-bi(1,2,4-triazole) ( tr2 cy)), MoVI-oxide, and CuSO4. This structural motif can be rationalized by assuming in situ generation of {Cu2Mo6O22}4- anions, which represent heteroleptic derivatives of γ-type [Mo8O26]4- further interlinked by [Cu3(OH)2]4+ cations through [ N- N] bridges. The framework structure of the resulting compound [Cu5(OH)2( tr2 cy)2Mo6O22]·6H2O (1) is thus built up from neutral heterometallic {Cu5(OH)2Mo6O22} n layers pillared with tetradentate tr2 cy. Quantum-chemical calculations demonstrate that the exclusive site of the parent γ-[Mo8O26]4- cluster into which CuII inserts corresponds with the site that has the lowest defect ("MoO2 vacancy") formation energy, demonstrating how the local metal-polyoxomolybdate chemistry can express itself in the final crystal structure. Magnetic susceptibility measurements of 1 show strong antiferromagnetic coupling within the Cu5 chain with exchange parameters J1 = -500(40) K (-348(28) cm-1), J2 = -350(10) K (-243(7) cm-1) and g = 2.32(2), χ2 = 6.5 × 10-4. Periodic quantum-chemical calculations reproduce the antiferromagnetic character of 1 and connect it with an effective ligand-mediated spin coupling mechanism that comes about from the favorable structural arrangement between the Cu centers and the OH-, O2-, and tr2 cy bridging ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...