Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mycology ; 10(2): 84-91, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31069122

ABSTRACT

The luminescent response of the enzymatic system of Armillaria borealis on the cold and hot extracts from cell-free culture liquids of Inonotus obliquus, Pholiota sp. and A. borealis was examined. The greatest influence on the light emission produced by the luminescent system of A. borealis was provided by the temperature at which the probes were prepared for assay. Boiling a culture liquid on water bath for a few minutes promoted a multifold increase in the luminescence. The results of luminescence assay suggest that the substance involved in the bioluminescent reaction in higher fungi is presented in culture liquids and mycelia in two forms. In one form, it is ready to interact with the enzymatic system and in the second form, it becomes accessible for the reaction after heat treatment. The pool of thermoactivated substance was found to be much large than the amount of the ready accessible one. We suggest that predecessors of hispidin, which is fungal luciferin precursor, are responsible for this phenomenon. They are not involved in bioluminescence at their original state and are converted into the substrate under the influence of high temperature.

2.
Angew Chem Int Ed Engl ; 54(28): 8124-8, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26094784

ABSTRACT

Many species of fungi naturally produce light, a phenomenon known as bioluminescence, however, the fungal substrates used in the chemical reactions that produce light have not been reported. We identified the fungal compound luciferin 3-hydroxyhispidin, which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. The fungal luciferin does not share structural similarity with the other eight known luciferins. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.


Subject(s)
Fungi/chemistry , Luminescent Measurements/methods , Biological Products
3.
Appl Opt ; 54(11): 3290-3, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25967315

ABSTRACT

We report on a high performance nonlinear optical filter for the telecommunication window that employs detonation nanodiamonds (NDs). The nanosecond Z-scan experiments revealed that the heavy water ND suspensions enable strong optical limiting in the wavelength range of 1400-1675 nm. We observed an enhancement of the optical limiting performance in the blue part of the communication window. In particular, at the wavelength of 1400 nm the transmittance of the 2 mm thick sample with 4.5 wt. % ND concentration is suppressed by 45% for the input fluence of 3.8 J/cm(2). The proposed nonlinear optical filter employs the phenomena of the nonlinear absorption and the nonlinear light scattering in ND suspensions.

4.
Luminescence ; 29(7): 703-10, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24729569

ABSTRACT

The luminescent system of higher luminous fungi is not fully understood and the enzyme/substrate pair of the light emission reaction has not been isolated. It was suggested that luminescence of fungi involves oxidase-type enzymes, and reactive oxygen species are important for fungal light production. Generation of reactive oxygen species can be stimulated by ionizing irradiation, which has not been studied for luminous fungi. We report the effect of X-irradiation on the luminescence of fungus Neonothopanus nambi. Experiments were performed with mycelium on a home-built setup based on an X-ray tube and monochromator/photomultiplier tube. Application of X-rays does not change the emission spectrum, but after approximately 20 min of continuous irradiation, light production from unsupported mycelium starts growing and increases up to approximately five times. After peaking, its level decreases irrespective of the presence of X-irradiation. After staying at a certain level, light production collapses to zero, which is not related to the drying of the mycelium or thermal impact of radiation. The observed shape of kinetics is characteristic of a multistage and/or chain reaction. The time profile of light production must reflect the current levels of radicals present in the system and/or the activity of enzyme complexes involved in light production.


Subject(s)
Agaricales/chemistry , Luminescence , Mycelium/chemistry , Agaricales/metabolism , Mycelium/metabolism , Radiation, Ionizing , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...