Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Exp Biol ; 53(11): 726-31, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26669015

ABSTRACT

In India, 20-30% of the human population suffer from allergic rhinitis and 15% of them develop asthma. Plant pollens are one of the causative aeroallergens and are mixture of a number of molecules including major and minor allergens (Panallergens). Profilin and polcalcin are the known pollen specific panallergens. Allergenicity of the Sorghum plant in Andhra Pradesh was found to be 54.9%. But the allergens responsible have not been characterized well. This study highlights identification and molecular characterization of Sorghum bicolor profilin (Sorb PF) and S. bicolor polcalcin (Sorb PC) allergen genes based on homology. The coding sequences of the two genes were PCR amplified from the cDNA constructed from Sorghum pollen total RNA. The gene sequences were deposited in NCBI, KC427126 and KC427125. Recombinantly expressed histidine tag (His-tag) purified Sorghum polcalcin and profilin confirmed 9 and 14 kDa proteins, respectively. Based on multiple sequence alignment and phylogenetic analysis, Sorghum polcalcin and profilin were found to be closely related with Cynodon dactylon, Phleum pratense and Oryza sativa grass species. In silico Algpred based screening of SorbPF and SorbPC showed an allergenicity score of 1.149 and 0.879, respectively. The structure of two Ef-hand sequences (DTNGDGKISLSEL and DTDGDGFIDFNEF) of SorbPC showed an exact match with Phlp7. It is concluded that Sorghum recombinant profilin and polcalcin proteins can be of potential use in developing diagnostic kits for allergenicity to Sorghum pollen grains.


Subject(s)
Allergens/chemistry , Antigens, Plant/chemistry , Profilins/chemistry , Sorghum/immunology , Amino Acid Sequence , Computer Simulation , Molecular Sequence Data , Pollen/chemistry , Pollen/immunology , Sequence Homology, Amino Acid
2.
Indian J Biochem Biophys ; 49(5): 395-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23259328

ABSTRACT

Oxidant imbalance is one of the causative mechanisms of aluminum-induced neurotoxicity. In this study, we investigated aluminum-induced oxidant imbalance in non-neuronal tissues (liver, kidney and testis) and temporal cortex in rats. The differences in adaptations to superoxide and peroxide handling capacities (SPHC) of studied organs due to aluminum insult were also evaluated. Male Wistar rats were exposed to aluminum (10 mg/Kg body wt/day) for 4 weeks through orogastric intubation. Liver showed significant decrease in reduced glutathione level, while significant alteration in lipid peroxidation was observed in temporal cortex in aluminium-exposed animals. Superoxide dismutase activity was significantly altered in liver and temporal cortex and catalase activity significantly reduced in the liver due to aluminum exposure, while glutathione reductase and glutathione peroxidase activities were altered in all the tested organs. Among the organs, glutathione-independent SPHC was relatively higher in liver and kidney, while glutathione-dependent SPHC was relatively higher in testis and temporal cortex. As compared to control, aluminum-exposed rats demonstrated reduction in glutathione-dependent SPHC in temporal cortex and increment of the same in testis, while increment in glutathione-independent SPHC was observed in liver. In conclusion, aluminum-induced alteration in oxidant handling capacity could be the cause of oxidative stress both in the neuronal and non-neuronal tissues.


Subject(s)
Aluminum/toxicity , Kidney/metabolism , Liver/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Temporal Lobe/metabolism , Testis/metabolism , Animals , Environmental Exposure/adverse effects , Kidney/drug effects , Liver/drug effects , Male , Peroxides/toxicity , Rats , Rats, Wistar , Temporal Lobe/drug effects , Testis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...