Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Psychiatry ; 93(11): 966-975, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36958999

ABSTRACT

BACKGROUND: Astrocytes control synaptic activity by modulating perisynaptic concentrations of ions and neurotransmitters including dopamine (DA) and, as such, could be involved in the modulating aspects of mammalian behavior. METHODS: We produced a conditional deletion of the vesicular monoamine transporter 2 (VMAT2) specifically in astrocytes (aVMTA2cKO mice) and studied the effects of the lack of VMAT2 in prefrontal cortex (PFC) astrocytes on the regulation of DA levels, PFC circuit functions, and behavioral processes. RESULTS: We found a significant reduction of medial PFC (mPFC) DA levels and excessive grooming and compulsive repetitive behaviors in aVMAT2cKO mice. The mice also developed a synaptic pathology, expressed through increased relative AMPA versus NMDA receptor currents in synapses of the dorsal striatum receiving inputs from the mPFC. Importantly, behavioral and synaptic phenotypes were rescued by re-expression of mPFC VMAT2 and L-DOPA treatment, showing that the deficits were driven by mPFC astrocytes that are critically involved in developmental DA homeostasis. By analyzing human tissue samples, we found that VMAT2 is expressed in human PFC astrocytes, corroborating the potential translational relevance of our observations in mice. CONCLUSIONS: Our study shows that impairment of the astrocytic control of DA in the mPFC leads to symptoms resembling obsessive-compulsive spectrum disorders such as trichotillomania and has a profound impact on circuit function and behaviors.


Subject(s)
Astrocytes , Dopamine , Mice , Animals , Humans , Astrocytes/physiology , Grooming , Synapses/physiology , Prefrontal Cortex/physiology , Mammals
2.
Int J Mol Sci ; 23(8)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35457231

ABSTRACT

The 22q11 deletion syndrome (DS) is the most common microdeletion syndrome in humans and gives a high probability of developing psychiatric disorders. Synaptic and neuronal malfunctions appear to be at the core of the symptoms presented by patients. In fact, it has long been suggested that the behavioural and cognitive impairments observed in 22q11DS are probably due to alterations in the mechanisms regulating synaptic function and plasticity. Often, synaptic changes are related to structural and functional changes observed in patients with cognitive dysfunctions, therefore suggesting that synaptic plasticity has a crucial role in the pathophysiology of the syndrome. Most interestingly, among the genes deleted in 22q11DS, six encode for mitochondrial proteins that, in mouse models, are highly expressed just after birth, when active synaptogenesis occurs, therefore indicating that mitochondrial processes are strictly related to synapse formation and maintenance of a correct synaptic signalling. Because correct synaptic functioning, not only requires correct neuronal function and metabolism, but also needs the active contribution of astrocytes, we summarize in this review recent studies showing the involvement of synaptic plasticity in the pathophysiology of 22q11DS and we discuss the relevance of mitochondria in these processes and the possible involvement of astrocytes.


Subject(s)
22q11 Deletion Syndrome , Astrocytes , 22q11 Deletion Syndrome/genetics , 22q11 Deletion Syndrome/metabolism , Animals , Astrocytes/metabolism , Humans , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neuronal Plasticity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...