Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37904995

ABSTRACT

How cell-type-specific chromatin landscapes emerge and progress during metazoan ontogenesis remains an important question. Transcription factors are expressed in a cell-type-specific manner and recruit chromatin-regulatory machinery to specific genomic loci. In contrast, chromatin-regulatory proteins are expressed broadly and are assumed to exert the same intrinsic function across cell types. However, human genetics studies have revealed an unexpected vulnerability of neurodevelopment to chromatin factor mutations with unknown mechanisms. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Of the 14 chromatin regulators, two are integral components of a histone H3K4 demethylase complex; the catalytic subunit LSD1 and an H3K4me0-reader protein PHF21A adopt neuron-specific forms. We found that canonical PHF21A (PHF21A-c) binds to DNA by AT-hook motif, and the neuronal counterpart PHF21A-n lacks this DNA-binding function yet maintains H3K4me0 recognition intact. In-vitro reconstitution of the canonical and neuronal PHF21A-LSD1 complexes identified the neuronal complex as a hypomorphic H3K4 demethylating machinery with reduced nucleosome engagement. Furthermore, an autism-associated PHF21A missense mutation, 1285 G>A, at the last nucleotide of the common exon immediately upstream of the neuronal microexon led to impaired splicing of PHF21A -n. Thus, ubiquitous chromatin regulatory complexes exert unique intrinsic functions in neurons via alternative splicing of their subunits and potentially contribute to faithful human brain development.

2.
Cells ; 12(4)2023 02 16.
Article in English | MEDLINE | ID: mdl-36831303

ABSTRACT

Chromatin dysregulation has emerged as a major hallmark of neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorders (ASD). The prevalence of ID and ASD is higher in males compared to females, with unknown mechanisms. Intellectual developmental disorder, X-linked syndromic, Claes-Jensen type (MRXSCJ), is caused by loss-of-function mutations of lysine demethylase 5C (KDM5C), a histone H3K4 demethylase gene. KDM5C escapes X-inactivation, thereby presenting at a higher level in females. Initially, MRXSCJ was exclusively reported in males, while it is increasingly evident that females with heterozygous KDM5C mutations can show cognitive deficits. The mouse model of MRXSCJ, male Kdm5c-hemizygous knockout animals, recapitulates key features of human male patients. However, the behavioral and molecular traits of Kdm5c-heterozygous female mice remain incompletely characterized. Here, we report that gene expression and behavioral abnormalities are readily detectable in Kdm5c-heterozygous female mice, demonstrating the requirement for a higher KDM5C dose in females. Furthermore, we found both shared and sex-specific consequences of a reduced KDM5C dose in social behavior, gene expression, and genetic interaction with the counteracting enzyme KMT2A. These observations provide an essential insight into the sex-biased manifestation of neurodevelopmental disorders and sex chromosome evolution.


Subject(s)
Intellectual Disability , Transcriptome , Humans , Male , Female , Animals , Mice , Histone Demethylases/metabolism , Mutation , Chromatin , Intellectual Disability/genetics
3.
FEBS J ; 289(8): 2301-2317, 2022 04.
Article in English | MEDLINE | ID: mdl-34514717

ABSTRACT

Mutations in numerous chromatin regulators cause neurodevelopmental disorders (NDDs) with unknown mechanisms. Understandably, most research has focused on how chromatin regulators control gene expression that is directly relevant to brain development and function, such as synaptic genes. However, some NDD models surprisingly show ectopic expression of germline genes in the brain. These germline genes are usually expressed only in the primordial germ cells, testis, and ovaries for germ cell development and sexual reproduction. Such ectopic germline gene expression has been reported in several NDDs, including immunodeficiency, centromeric instability, facial anomalies syndrome 1; Kleefstra syndrome 1; MeCP2 duplication syndrome; and mental retardation, X-linked syndromic, Claes-Jensen type. The responsible genes, DNMT3B, G9A/GLP, MECP2, and KDM5C, all encode chromatin regulators for gene silencing. These mutations may therefore lead to germline gene derepression and, in turn, a severe identity crisis of brain cells-potentially interfering with normal brain development. Thus, the ectopic expression of germline genes is a unique hallmark defining this NDD subset and further implicates the importance of germline gene silencing during brain development. The functional impact of germline gene expression on brain development, however, remains undetermined. This perspective article explores how this apparent soma-to-germline transformation arises and how it may interfere with neurodevelopment through genomic instability and impaired sensory cilium formation. Furthermore, we also discuss how to test these hypotheses experimentally to ultimately determine the contribution of ectopic germline transcripts to chromatin-linked NDDs.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Chromatin/genetics , Germ Cells , Humans , Intellectual Disability/genetics , Male , Neurodevelopmental Disorders/genetics , Neurons
4.
Genome Res ; 31(2): 186-197, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33414108

ABSTRACT

Transcriptional enhancers enable exquisite spatiotemporal control of gene expression in metazoans. Enrichment of monomethylation of histone H3 lysine 4 (H3K4me1) is a major chromatin signature of transcriptional enhancers. Lysine (K)-specific demethylase 1A (KDM1A, also known as LSD1), an H3K4me2/me1 demethylase, inactivates stem-cell enhancers during the differentiation of mouse embryonic stem cells (mESCs). However, its role in undifferentiated mESCs remains obscure. Here, we show that KDM1A actively maintains the optimal enhancer status in both undifferentiated and lineage-committed cells. KDM1A occupies a majority of enhancers in undifferentiated mESCs. KDM1A levels at enhancers exhibit clear positive correlations with its substrate H3K4me2, H3K27ac, and transcription at enhancers. In Kdm1a-deficient mESCs, a large fraction of these enhancers gains additional H3K4 methylation, which is accompanied by increases in H3K27 acetylation and increased expression of both enhancer RNAs (eRNAs) and target genes. In postmitotic neurons, loss of KDM1A leads to premature activation of neuronal activity-dependent enhancers and genes. Taken together, these results suggest that KDM1A is a versatile regulator of enhancers and acts as a rheostat to maintain optimal enhancer activity by counterbalancing H3K4 methylation at enhancers.

5.
Commun Biol ; 3(1): 278, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483278

ABSTRACT

Histone H3 lysine 4 methylation (H3K4me) is extensively regulated by numerous writer and eraser enzymes in mammals. Nine H3K4me enzymes are associated with neurodevelopmental disorders to date, indicating their important roles in the brain. However, interplay among H3K4me enzymes during brain development remains largely unknown. Here, we show functional interactions of a writer-eraser duo, KMT2A and KDM5C, which are responsible for Wiedemann-Steiner Syndrome (WDSTS), and mental retardation X-linked syndromic Claes-Jensen type (MRXSCJ), respectively. Despite opposite enzymatic activities, the two mouse models deficient for either Kmt2a or Kdm5c shared reduced dendritic spines and increased aggression. Double mutation of Kmt2a and Kdm5c clearly reversed dendritic morphology, key behavioral traits including aggression, and partially corrected altered transcriptomes and H3K4me landscapes. Thus, our study uncovers common yet mutually suppressive aspects of the WDSTS and MRXSCJ models and provides a proof of principle for balancing a single writer-eraser pair to ameliorate their associated disorders.


Subject(s)
Abnormalities, Multiple/genetics , Aggression , Craniofacial Abnormalities/genetics , Dendritic Spines/metabolism , Growth Disorders/genetics , Histone Demethylases/genetics , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Hypertrichosis/genetics , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Animals , Disease Models, Animal , Histone Demethylases/deficiency , Histone-Lysine N-Methyltransferase/deficiency , Male , Methylation , Mice , Myeloid-Lymphoid Leukemia Protein/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...