Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Contact Dermatitis ; 91(1): 1-10, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38577784

ABSTRACT

BACKGROUND: Nickel is the leading cause of contact allergy in Europe, with 14.5% of the adult population being sensitized. Despite regulations limiting nickel release from consumer items, the incidence and prevalence of nickel allergy remain high. OBJECTIVE: To investigate the clinical and subclinical immune response to low-dose nickel exposure on nickel pre-exposed skin to assess the adequacy of current regulatory limits. METHOD: Nickel-allergic and healthy controls were patch tested with nickel twice with a 3-4 weeks interval. The first exposure used the diagnostic concentration of 2000 µg/cm2 nickel sulphate, and the same skin areas were then re-exposed to 0.2, 0.5, 12.8 and 370 µg/cm2 nickel sulphate. After 48 h, the patch reactions were examined for clinical signs of eczema, and skin biopsies were collected. The transcriptomic immune profile was analysed with Nanostring nCounter and quantitative polymerase chain reaction. RESULTS: Two nickel-allergic participants (15%) had clinical reactions to the regulatory limiting doses for nickel (0.2/0.5 µg/cm2) following re-exposure. There was immune activation in all skin areas following re-exposure to nickel, predominantly mediated by up-regulation of cytokines and chemokines. In all nickel re-exposed skin areas, 81 genes were up-regulated independent from the clinical response. In skin areas exposed to 0.2 µg/cm2, 101 immune-related genes were differentially expressed, even when no clinical response was observed. Healthy controls showed up-regulation of three genes in response to nickel re-exposures without any clinical reactions. CONCLUSION: Immune activation can be induced in skin with local memory to nickel upon challenge with nickel doses within the regulatory limits. Our findings suggest that the regulatory limits in the European nickel regulation may not provide sufficient protection for consumers against low-dose exposures.


Subject(s)
Dermatitis, Allergic Contact , Nickel , Patch Tests , Humans , Nickel/adverse effects , Nickel/immunology , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/immunology , Dermatitis, Allergic Contact/diagnosis , Adult , Female , Male , Middle Aged , Case-Control Studies , Cytokines/metabolism , Dose-Response Relationship, Drug , Young Adult , Skin/drug effects , Skin/immunology
2.
Allergy ; 79(5): 1291-1305, 2024 May.
Article in English | MEDLINE | ID: mdl-38263750

ABSTRACT

BACKGROUND: p-Phenylenediamine (PPD) is a potent contact allergen found in many hair colour products. However, not all individuals develop allergic contact dermatitis (ACD) although they are regularly exposed to PPD. It is unclear whether these asymptomatic individuals are true non-responders to PPD or whether they mount a response to PPD without showing any symptoms. METHODS: Skin biopsies were collected from 11 asymptomatic hairdressers regularly exposed to PPD and from 10 individuals with known ACD on day 4 after patch testing with 1% PPD in petrolatum and petrolatum exclusively as control. RNA sequencing and confocal microscopy were performed. RESULTS: T cell activation, inflammation and apoptosis pathways were up-regulated by PPD in both asymptomatic and allergic individuals. Compared to asymptomatic individuals with a negative patch test, individuals with a strong reaction to PPD strongly up-regulated both pro- and anti-inflammatory cytokines genes. Interestingly, PPD treatment induced significant up-regulation of several genes for chemokines, classical type 2 dendritic cell markers and regulatory T cell markers in both asymptomatic and allergic individuals. In addition, apoptosis signalling pathway was activated in both non-responders and allergic individuals. CONCLUSION: This study demonstrates that there are no true non-responders to PPD but that the immune response elicited by PPD differs between individuals and can lead to either tolerance, subclinical inflammation or allergy.


Subject(s)
Dermatitis, Allergic Contact , Phenylenediamines , Skin , Humans , Phenylenediamines/pharmacology , Dermatitis, Allergic Contact/immunology , Dermatitis, Allergic Contact/genetics , Skin/immunology , Skin/pathology , Skin/metabolism , Male , Adult , Female , Gene Expression Regulation/drug effects , Immune Tolerance , Cytokines/metabolism , Allergens/immunology , Middle Aged , Hair Dyes/adverse effects , Young Adult , Patch Tests , Apoptosis
4.
J Invest Dermatol ; 144(2): 316-330.e3, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37544588

ABSTRACT

Innate lymphoid cells (ILCs) are essential players in the skin-associated immune system, nevertheless little is known about their proteomes and proteomic diversity. In this study, we describe about 6,600 proteins constitutively expressed by ILC2s and ILC3s from healthy human skin and blood using state-of-the-art proteomics. Although the vast majority of proteins was expressed by both ILC subsets and in both compartments, the skin ILC2s and ILC3s were more distinct than their counterparts in blood. Only skin ILC3s expressed uniquely detected proteins. Our in-depth proteomic dataset allowed us to define the cluster of differentiation marker profiles of the ILC subsets, explore distribution and abundance of proteins known to have immunological functions, as well as identify subset-specific proteins that have not previously been implicated in ILC biology. Taken together, our analyses substantially expand understanding of the protein expression signatures of ILC subsets. Going forward, these proteomic datasets will serve as valuable resources for future studies of ILC biology.


Subject(s)
Immunity, Innate , Lymphocytes , Humans , Proteomics , Skin
5.
Contact Dermatitis ; 89(6): 442-452, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37700557

ABSTRACT

BACKGROUND: Allergic contact dermatitis (ACD) is an inflammatory disease with a complex pathophysiology in which epidermal-resident memory CD8+ T (TRM ) cells play a key role. The mechanisms involved in the activation of CD8+ TRM cells during allergic flare-up responses are not understood. METHODS: The expression of CD100 and its ligand Plexin B2 on CD8+ TRM cells and keratinocytes before and after allergen exposure was determined by flow cytometry and RT-qPCR. The role of CD100 in the inflammatory response during the challenge phase of ACD was determined in a model of ACD in CD100 knockout and wild-type mice. RESULTS: We show that CD8+ TRM cells express CD100 during homeostatic conditions and up-regulate it following re-exposure of allergen-experienced skin to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene (DNFB). Furthermore, Plexin B2 is up-regulated on keratinocytes following exposure to some contact allergens. We show that loss of CD100 results in a reduced inflammatory response to DNFB with impaired production of IFNγ, IL-17A, CXCL1, CXCL2, CXCL5, and IL-1ß and decreased recruitment of neutrophils to the epidermis. CONCLUSION: Our study demonstrates that CD100 is expressed on CD8+ TRM cells and is required for full activation of CD8+ TRM cells and the flare-up response of ACD.


Subject(s)
Dermatitis, Allergic Contact , Animals , Mice , Allergens , Dermatitis, Allergic Contact/metabolism , Dinitrofluorobenzene/metabolism , Keratinocytes/metabolism , Skin
6.
Contact Dermatitis ; 89(5): 323-334, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37619972

ABSTRACT

BACKGROUND: The junctional adhesion molecule-like protein (JAML) plays important roles in wound healing and activation of epidermal γδ T cells in mice. Whether JAML plays a role in contact hypersensitivity (CHS), the animal model of allergic contact dermatitis (ACD), is not known. METHODS: To examine the role of JAML in CHS, we used various mouse models of CHS in JAML knockout (KO) and wild-type (WT) mice. Furthermore, the expression of the JAML ligand coxsackievirus and adenovirus receptor (CXADR) on keratinocytes was accessed in vitro and in vivo. RESULTS: JAML KO mice had a diminished inflammatory response during both the sensitization and elicitation phase of CHS and had reduced numbers of CD8+ and CD4+ T cells in the epidermis. Furthermore, interferon γ (IFNγ), interleukin 1ß (IL-1ß) and CXCL10 production were significantly reduced in JAML KO mice during the elicitation phase. We found that CD8+ T cells express JAML and that JAML is essential for rapid flare-up responses to contact allergens. Finally, we show that keratinocytes up-regulate the JAML ligand CXADR following exposure to contact allergens. CONCLUSION: Our study is the first to show a central role of JAML in CHS and reveals a potential new target for the treatment of ACD in humans.


Subject(s)
CD8-Positive T-Lymphocytes , Dermatitis, Allergic Contact , Humans , Mice , Animals , Junctional Adhesion Molecules , Ligands , Epidermis , Mice, Knockout , Mice, Inbred C57BL
7.
J Invest Dermatol ; 143(9): 1757-1768.e3, 2023 09.
Article in English | MEDLINE | ID: mdl-36889662

ABSTRACT

Staphylococcus aureus is suspected to fuel disease activity in cutaneous T-cell lymphomas. In this study, we investigate the effect of a recombinant, antibacterial protein, endolysin (XZ.700), on S. aureus skin colonization and malignant T-cell activation. We show that endolysin strongly inhibits the proliferation of S. aureus isolated from cutaneous T-cell lymphoma skin and significantly decreases S. aureus bacterial cell counts in a dose-dependent manner. Likewise, ex vivo colonization of both healthy and lesional skin by S. aureus is profoundly inhibited by endolysin. Moreover, endolysin inhibits the patient-derived S. aureus induction of IFNγ and the IFNγ-inducible chemokine CXCL10 in healthy skin. Whereas patient-derived S. aureus stimulates activation and proliferation of malignant T cells in vitro through an indirect mechanism involving nonmalignant T cells, endolysin strongly inhibits the effects of S. aureus on activation (reduced CD25 and signal transducer and activator of transcription 5 phosphorylation) and proliferation (reduced Ki-67) of malignant T cells and cell lines in the presence of nonmalignant T cells. Taken together, we provide evidence that endolysin XZ.700 inhibits skin colonization, chemokine expression, and proliferation of pathogenic S. aureus and blocks their potential tumor-promoting effects on malignant T cells.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Staphylococcal Infections , Humans , Staphylococcus aureus , Skin/microbiology , Staphylococcal Infections/microbiology , Lymphoma, T-Cell, Cutaneous/drug therapy , Recombinant Proteins , T-Lymphocytes , Skin Neoplasms/drug therapy , Skin Neoplasms/microbiology
8.
Cells ; 11(16)2022 08 19.
Article in English | MEDLINE | ID: mdl-36010663

ABSTRACT

The glucagon-like peptide-1 receptor (GLP-1R) plays a key role in metabolism and is an important therapeutic target in diabetes and obesity. Recent studies in experimental animals have shown that certain subsets of T cells express functional GLP-1R, indicating an immune regulatory role of GLP-1. In contrast, less is known about the expression and function of the GLP-1R in human T cells. Here, we provide evidence that activated human T cells express GLP-1R. The expressed GLP-1R was functional, as stimulation with a GLP-1R agonist triggered an increase in intracellular cAMP, which was abrogated by a GLP-1R antagonist. Analysis of CD4+ T cells activated under T helper (Th) 1, Th2, Th17 and regulatory T (Treg) cell differentiation conditions indicated that GLP-1R expression was most pronounced in induced Treg (iTreg) cells. Through multimodal single-cell CITE- and TCR-sequencing, we detected GLP-1R expression in 29-34% of the FoxP3+CD25+CD127- iTreg cells. GLP-1R+ cells showed no difference in their TCR-gene usage nor CDR3 lengths. Finally, we demonstrated the presence of GLP-1R+CD4+ T cells in skin from patients with allergic contact dermatitis. Taken together, the present data demonstrate that T cell activation triggers the expression of functional GLP-1R in human CD4+ T cells. Given the high induction of GLP-1R in human iTreg cells, we hypothesize that GLP-1R+ iTreg cells play a key role in the anti-inflammatory effects ascribed to GLP-1R agonists in humans.


Subject(s)
Glucagon-Like Peptide-1 Receptor , T-Lymphocytes, Regulatory , Animals , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Lymphocyte Activation , Receptors, Antigen, T-Cell
9.
Vaccines (Basel) ; 10(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35632584

ABSTRACT

Hypersensitivity to a contact allergen is one of the most abundant forms of inflammatory skin disease. Today, more than 20% of the general population are sensitized to one or more contact allergens, making this disease an important healthcare issue, as re-exposure to the allergen can initiate the clinical disease termed allergic contact dermatitis (ACD). The current standard treatment using corticosteroids is effective, but it has side effects when used for longer periods. Therefore, there is a need for new alternative therapies for severe ACD. In this study, we used the versatile Tag/Catcher AP205 capsid virus-like particle (cVLP) vaccine platform to develop an IL-1ß-targeted vaccine and to assess the immunogenicity and in vivo efficacy of the vaccine in a translational mouse model of ACD. We show that vaccination with cVLPs displaying full-length murine IL-1ß elicits high titers of neutralizing antibodies, leading to a significant reduction in local IL-1ß levels as well as clinical symptoms induced by treatment with 1-Fluoro-2,4-dinitrobenzene (DNFB). Moreover, we show that a single amino acid mutation in muIL-1ß reduces the biological activity while maintaining the ability to induce neutralizing antibodies. Collectively, the data suggest that a cVLP-based vaccine displaying full-length IL-1ß represents a promising vaccine candidate for use as an alternative treatment modality against severe ACD.

10.
Allergy ; 77(2): 513-524, 2022 02.
Article in English | MEDLINE | ID: mdl-34169536

ABSTRACT

BACKGROUND: Allergic contact dermatitis (ACD) is classically described as a delayed-type hypersensitivity reaction. However, patients often experience flare-ups characterized by itching erythema, edema, and often vesicles occurring within hours after re-exposure of previously sensitized skin to the specific contact allergen. Recent studies have indicated that skin-resident memory T (TRM ) cells play a central role in ACD. However, the pathogenic role of TRM cells in allergen-induced flare-ups is not known. METHODS: By the use of various mouse models and cell depletion protocols, we investigated the role of epidermal TRM cells in flare-up reactions to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene. The inflammatory response was measured by changes in ear thickness, and the cellular composition in epidermis was determined by flow cytometry and confocal microscopy. Finally, adaptive transfer and inhibitors were used to determine the role of TRM cells, neutrophils, and CXCL1/CXCL2 in the response. RESULTS: We show that CD8+ TRM cells initiate massive infiltration of neutrophils in the epidermis within 12 h after re-exposure to the contact allergen. Depletion of neutrophils before re-exposure to the allergen abrogated the flare-up reactions. Furthermore, we demonstrate that CD8+ TRM cells mediate neutrophil recruitment by inducing CXCL1 and CXCL2 production in the skin, and that blockage of the C-X-C chemokine receptor type 1 and 2 inhibits flare-up reactions and neutrophil infiltration. CONCLUSION: As the first, we show that epidermal CD8+ TRM cells cause ACD flare-ups by rapid recruitment of neutrophils to the epidermis.


Subject(s)
Dermatitis, Allergic Contact , Neutrophils , Allergens , Animals , CD8-Positive T-Lymphocytes , Dermatitis, Allergic Contact/pathology , Humans , Immunologic Memory , Memory T Cells , Mice
11.
Front Immunol ; 12: 715059, 2021.
Article in English | MEDLINE | ID: mdl-34408754

ABSTRACT

Th22 cells constitute a recently described CD4+ T cell subset defined by its production of interleukin (IL)-22. The action of IL-22 is mainly restricted to epithelial cells. IL-22 enhances keratinocyte proliferation but inhibits their differentiation and maturation. Dysregulated IL-22 production has been associated to some inflammatory skin diseases such as atopic dermatitis and psoriasis. How IL-22 production is regulated in human T cells is not fully known. In the present study, we identified conditions to generate Th22 cells that do not co-produce IL-17 from naïve human CD4+ T cells. We show that in addition to the transcription factors AhR and RORγt, the active form of vitamin D3 (1,25(OH)2D3) regulates IL-22 production in these cells. By studying T cells with a mutated vitamin D receptor (VDR), we demonstrate that the 1,25(OH)2D3-induced inhibition of il22 gene transcription is dependent on the transcriptional activity of the VDR in the T cells. Finally, we identified a vitamin D response element (VDRE) in the il22 promoter and demonstrate that 1,25(OH)2D3-VDR directly inhibits IL-22 production via this repressive VDRE.


Subject(s)
Gene Expression Regulation/drug effects , Interleukins/biosynthesis , Interleukins/genetics , Promoter Regions, Genetic , Vitamin D Response Element , Vitamin D/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites , Biomarkers , Cell Line , Cytokines/biosynthesis , Humans , Inflammation Mediators/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nucleotide Motifs , Protein Binding , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Calcitriol/metabolism , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Interleukin-22
12.
Contact Dermatitis ; 85(4): 387-397, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34324721

ABSTRACT

Interleukin-1ß (IL-1ß) is an important pro-inflammatory cytokine that has an effect on almost every cell lineage in the body. By blocking IL-1ß and investigating the IL-1ß signaling pathway, several studies have demonstrated a central role of IL-1ß in the response to contact allergens. This review summarizes the current literature regarding the basic immunological mechanisms mediated by IL-1ß in the different phases of allergic contact dermatitis (ACD) and highlights potential IL-1ß-targeted treatment options, which in the future may be relevant in the treatment of patients with ACD. This review is based primarily on studies using various mouse models and human in vitro studies, since clinical studies on the effect of IL-1ß in ACD are lacking.


Subject(s)
Dermatitis, Allergic Contact/immunology , Interleukin-1beta/immunology , Allergens/immunology , Animals , Dermatitis, Allergic Contact/drug therapy , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Dermatitis, Irritant/drug therapy , Dermatitis, Irritant/immunology , Disease Models, Animal , Humans , Interleukin-1beta/antagonists & inhibitors , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/immunology , Signal Transduction
13.
Front Immunol ; 12: 684015, 2021.
Article in English | MEDLINE | ID: mdl-34093587

ABSTRACT

The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), mediates its immunomodulatory effects by binding to the vitamin D receptor (VDR). Here, we describe a new point mutation in the DNA-binding domain of the VDR and its consequences for 1,25(OH)2D3 signaling in T cells from heterozygous and homozygous carriers of the mutation. The mutation did not affect the overall structure or the ability of the VDR to bind 1,25(OH)2D3 and the retinoid X receptor. However, the subcellular localization of the VDR was strongly affected and the transcriptional activity was abolished by the mutation. In heterozygous carriers of the mutation, 1,25(OH)2D3-induced gene regulation was reduced by ~ 50% indicating that the expression level of wild-type VDR determines 1,25(OH)2D3 responsiveness in T cells. We show that vitamin D-mediated suppression of vitamin A-induced gene regulation depends on an intact ability of the VDR to bind DNA. Furthermore, we demonstrate that vitamin A inhibits 1,25(OH)2D3-induced translocation of the VDR to the nucleus and 1,25(OH)2D3-induced up-regulation of CYP24A1. Taken together, this study unravels novel aspects of vitamin D signaling and function of the VDR in human T cells.


Subject(s)
Familial Hypophosphatemic Rickets/metabolism , Receptors, Calcitriol/genetics , T-Lymphocytes/metabolism , Vitamin D/genetics , Child , Family , Female , Heterozygote , Homozygote , Humans , Male , Mutation , Receptors, Calcitriol/metabolism , Up-Regulation , Vitamin D/metabolism , Vitamin D3 24-Hydroxylase/metabolism
14.
J Invest Dermatol ; 141(10): 2449-2458, 2021 10.
Article in English | MEDLINE | ID: mdl-33862068

ABSTRACT

Staphylococcal enterotoxins are believed to fuel disease activity in cutaneous T-cell lymphoma. Recent data support this by showing that antibiotics inhibit malignant T cells in skin lesions in mycosis fungoides and Sézary syndrome, the most common forms of cutaneous T-cell lymphoma. Yet, it remains incompletely characterized how staphylococcal enterotoxins fuel disease activity. In this study, we show that staphylococcal enterotoxins induce the expression of the oncogenic microRNA miR-155 in primary malignant T cells. Thus, staphylococcal enterotoxins and Staphyloccocus aureus isolates from lesional skin of patients induce miR-155 expression at least partly through the IL-2Rg‒Jak‒signal transducer and activator of transcription 5 pathway, and the effect is augmented by the presence of nonmalignant T cells. Importantly, mycosis fungoides lesions harbor S. aureus, express Y-phosphorylated signal transducer and activator of transcription 5, and display enhanced miR-155 expression, when compared with nonlesional and healthy skin. Preliminary data show that aggressive antibiotic therapy is associated with decreased Y-phosphorylated signal transducer and activator of transcription 5 and miR-155 expression in lesional skin in two patients with Sézary syndrome. In conclusion, we show that S. aureus and its enterotoxins induce enhanced expression of oncogenic miR-155, providing mechanistic insight into the role of S. aureus in cutaneous T-cell lymphoma. Our findings support that environmental stimuli such as bacteria can fuel disease progression in cutaneous T-cell lymphoma.


Subject(s)
Enterotoxins/toxicity , Lymphoma, T-Cell, Cutaneous/etiology , MicroRNAs/physiology , STAT5 Transcription Factor/physiology , Skin Neoplasms/etiology , Staphylococcus aureus/pathogenicity , Anti-Bacterial Agents/pharmacology , Cell Line, Tumor , Humans
15.
Cancers (Basel) ; 13(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466582

ABSTRACT

Perturbation in JAK-STAT signaling has been reported in the pathogenesis of cutaneous T cell lymphoma (CTCL). JAK3 is predominantly associated with the intra-cytoplasmic part of IL-2Rγc located in the plasma membrane of hematopoietic cells. Here we demonstrate that JAK3 is also ectopically expressed in the nucleus of malignant T cells. We detected nuclear JAK3 in various CTCL cell lines and primary malignant T cells from patients with Sézary syndrome, a leukemic variant of CTCL. Nuclear localization of JAK3 was independent of its kinase activity whereas STAT3 had a modest effect on nuclear JAK3 expression. Moreover, JAK3 nuclear localization was only weakly affected by blockage of nuclear export. An inhibitor of the nuclear export protein CRM1, Leptomycin B, induced an increased expression of SOCS3 in the nucleus, but only a weak increase in nuclear JAK3. Importantly, immunoprecipitation experiments indicated that JAK3 interacts with the nuclear protein POLR2A, the catalytic subunit of RNA Polymerase II. Kinase assays showed tyrosine phosphorylation of recombinant human Histone H3 by JAK3 in vitro-an effect which was blocked by the JAK inhibitor (Tofacitinib citrate). In conclusion, we provide the first evidence of nuclear localization of JAK3 in malignant T cells. Our findings suggest that JAK3 may have a cytokine-receptor independent function in the nucleus of malignant T cells, and thus a novel non-canonical role in CTCL.

16.
Blood Cancer J ; 10(5): 57, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32409671

ABSTRACT

Sézary syndrome (SS) is a heterogeneous leukemic subtype of cutaneous T-cell lymphoma (CTCL) with generalized erythroderma, lymphadenopathy, and a poor prognosis. Advanced disease is invariably associated with severe immune dysregulation and the majority of patients die from infectious complications caused by microorganisms such as, Staphylococcus aureus, rather than from the lymphoma per se. Here, we examined if staphylococcal enterotoxins (SE) may shape the phenotype of malignant SS cells, including expression of the regulatory T-cell-associated marker FOXP3. Our studies with primary and cultured malignant cells show that SE induce expression of FOXP3 in malignant cells when exposed to nonmalignant cells. Mutations in the MHC class II binding domain of SE-A (SEA) largely block the effect indicating that the response relies at least in part on the MHC class II-mediated antigen presentation. Transwell experiments show that the effect is induced by soluble factors, partly blocked by anti-IL-2 antibody, and depends on STAT5 activation in malignant cells. Collectively, these findings show that SE stimulate nonmalignant cells to induce FOXP3 expression in malignant cells. Thus, differences in exposure to environmental factors, such as bacterial toxins may explain the heterogeneous FOXP3 expression in malignant cells in SS.


Subject(s)
Enterotoxins/immunology , Forkhead Transcription Factors/genetics , Sezary Syndrome/immunology , Skin Neoplasms/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Cell Line, Tumor , Forkhead Transcription Factors/immunology , Humans , Sezary Syndrome/complications , Sezary Syndrome/genetics , Skin Neoplasms/complications , Skin Neoplasms/genetics , Staphylococcal Infections/complications , Staphylococcal Infections/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Cells, Cultured , Up-Regulation
17.
J Invest Dermatol ; 140(4): 806-815.e5, 2020 04.
Article in English | MEDLINE | ID: mdl-31518559

ABSTRACT

The skin is our interface with the outside world, and consequently it is exposed to a wide range of microbes and allergens. Recent studies have indicated that allergen-specific skin-resident memory T (TRM) cells play a role in allergic contact dermatitis (ACD). However, the composition and dynamics of the epidermal T-cell subsets during ACD are not known. Here we show that exposure of the skin to the experimental contact allergen DNFB results in a displacement of the normally occurring dendritic epidermal T cells (DETC) concomitant with an accumulation of epidermal CD8+CD69+CD103+ TRM cells in mice. By studying knockout mice, we provide evidence that CD8+ T cells are required for the displacement of the DETC and that DETC are not required for recruitment of CD8+ TRM cells to the epidermis following allergen exposure. We demonstrate that the magnitude of the allergic reaction correlates with the number of CD8+ epidermal TRM cells, which again correlates with allergen dose and number of allergen exposures. Finally, in an attempt to elucidate why CD8+ epidermal TRM cells persist in the epidermis, we show that CD8+ epidermal TRM cells have a higher proliferative capability and are bioenergetically more stable, displaying a higher spare respiratory capacity than DETC.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Dermatitis, Allergic Contact/immunology , Immunologic Memory , Animals , CD8-Positive T-Lymphocytes/pathology , Dendritic Cells/pathology , Dermatitis, Allergic Contact/pathology , Disease Models, Animal , Epidermis/pathology , Mice , Mice, Knockout
18.
J Allergy Clin Immunol ; 145(2): 619-631.e2, 2020 02.
Article in English | MEDLINE | ID: mdl-31783056

ABSTRACT

BACKGROUND: p-Phenylenediamine (PPD) is a strong contact allergen used in hair dye that is known to cause allergic contact dermatitis (ACD). Both private and occupational exposure to PPD is frequent, but the effect of PPD exposure in nonallergic occupationally exposed subjects is unknown. OBJECTIVE: We sought to investigate the effects of PPD exposure on the skin of occupationally exposed subjects with and without clinical symptoms. METHODS: Skin biopsy specimens were collected from 4 patients with mild and 5 patients with severe PPD-related ACD and 7 hairdressers without contact dermatitis on day 4 after patch testing with 1% PPD in petrolatum. RNA sequencing and transcriptomics analyses were performed and confirmed by using quantitative RT-PCR. Protein expression was analyzed in skin from 4 hairdressers and 1 patient with ACD by using immunofluorescence staining. Reconstructed human epidermis was used to test the effects of PPD in vitro. RESULTS: RNA sequencing demonstrated downregulation of tight junction and stratum corneum proteins in the skin of patients with severe ACD after PPD exposure. Claudin-1 (CLDN-1), CLDN8, CLDN11, CXADR-like membrane protein (CLMP), occludin (OCLN), membrane-associated guanylate kinase inverted 1 (MAGI1), and MAGI2 mRNA expression was downregulated in patients with severe ACD. CLDN1 and CLMP expression were downregulated in nonresponding hairdressers and patients with mild ACD. Filaggrin 1 (FLG1), FLG2, and loricrin (LOR) expression were downregulated in patients with ACD. Confocal microscopic images showed downregulation of CLDN-1, FLG-1, and FLG-2 expression. In contrast, 3-dimensional skin cultures showed upregulation of FLG-1 in response to PPD but downregulation of FLG-2. CONCLUSION: PPD-exposed skin is associated with extensive transcriptomic changes, including downregulation of tight junction and stratum corneum proteins, even in the absence of clinical symptoms.


Subject(s)
Hair Dyes/adverse effects , Occupational Exposure/adverse effects , Phenylenediamines/adverse effects , Skin/drug effects , Adult , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/pathology , Female , Filaggrin Proteins , Humans , Skin/pathology , Tight Junction Proteins/drug effects
19.
Sci Rep ; 9(1): 16725, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31723203

ABSTRACT

In addition to antigen-driven signals, T cells need co-stimulatory signals for robust activation. Several receptors, including members of the tumor necrosis factor receptor superfamily (TNFRSF), can deliver co-stimulatory signals to T cells. Thioredoxin interacting protein (TXNIP) is an important inhibitor of glucose uptake and cell proliferation, but it is unknown how TXNIP is regulated in T cells. The aim of this study was to determine expression levels and regulation of TXNIP in human T cells. We found that naïve T cells express high levels of TXNIP and that treatment of blood samples with TNF results in rapid down-regulation of TXNIP in the T cells. TNF-induced TXNIP down-regulation correlated with increased glucose uptake. Furthermore, we found that density gradient centrifugation (DGC) induced down-regulation of TXNIP. We demonstrate that DGC induced TNF production that paralleled the TXNIP down-regulation. Treatment of blood with toll-like receptor (TLR) ligands induced TNF production and TXNIP down-regulation, suggesting that damage-associated molecular patterns (DAMPs), such as endogenous TLR ligands, released during DGC play a role in DGC-induced TXNIP down-regulation. Finally, we demonstrate that TNF-induced TXNIP down-regulation is dependent on caspase activity and is caused by caspase-mediated cleavage of TXNIP.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Glucose/metabolism , T-Lymphocytes/metabolism , Toll-Like Receptors/agonists , Tumor Necrosis Factor-alpha/pharmacology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Down-Regulation , Humans , T-Lymphocytes/drug effects
20.
J Clin Med ; 8(8)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434199

ABSTRACT

Metal release from total hip replacements (THRs) is associated with aseptic loosening (AL). It has been proposed that the underlying immunological response is caused by a delayed type IV hypersensitivity-like reaction to metals, i.e., metal allergy. The purpose of this study was to investigate the immunological response in patients with AL in relation to metal release and the prevalence of metal allergy. THR patients undergoing revision surgery due to AL or mechanical implant failures were included in the study along with a control group consisting of primary THR patients. Comprehensive cytokine analyses were performed on serum and periimplant tissue samples along with metal analysis using inductive coupled plasma mass spectrometry (ICP-MS). Patient patch testing was done with a series of metals related to orthopedic implant. A distinct cytokine profile was found in the periimplant tissue of patients with AL. Significantly increased levels of the proinflammatory cytokines IL-1ß, IL-2, IL-8, IFN-γ and TNF-α, but also the anti-inflammatory IL-10 were detected. A general increase of metal concentrations in the periimplant tissue was observed in both revision groups, while Cr was significantly increased in patient serum with AL. No difference in the prevalence of metal sensitivity was established by patch testing. Increased levels of IL-1ß, IL-8, and TNF-α point to an innate immune response. However, the presence of IL-2 and IFN-γ indicates additional involvement of T cell-mediated response in patients with AL, although this could not be detected by patch testing.

SELECTION OF CITATIONS
SEARCH DETAIL
...