Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Noncoding RNA ; 2(3)2016 Jun 30.
Article in English | MEDLINE | ID: mdl-29657265

ABSTRACT

The threshold of 200 nucleotides (nt) conventionally divides non-coding RNAs (ncRNA) into long ncRNA (lincRNA, that have more than 200 nt in length) and the remaining ones which are grouped as "small" RNAs (microRNAs, small nucleolar RNAs and piwiRNAs). Promoter-associated RNAs (paRNAs) are generally 200-500 nt long and are transcribed from sequences positioned in the promoter regions of genes. Growing evidence suggests that paRNAs play a crucial role in controlling gene transcription. Here, we used deep sequencing to identify paRNA sequences that show altered expression in a melanoma cell line compared to normal melanocytes. Thousands of reads were mapped to transcription start site (TSS) regions. We limited our search to paRNAs adjacent to genes with an expression that differed between melanoma and normal melanocytes and a length of 200-500 nt that did not overlap the gene mRNA by more than 300 nt, ultimately leaving us with 11 such transcripts. Using quantitative real-time PCR (qRT-PCR), we found a significant correlation between the expression of the mRNA and its corresponding paRNA for two studied genes: TYR and HSPC152. Ectopic overexpression of the paRNA of HSPC152 (designated paHSPC) enhanced the expression of the HSPC152 mRNA, and an siRNA targeting the paHSPC152 decreased the expression of the HSPC152 mRNA. Overexpression of paHSPC also affected the epigenetic structure of its putative promoter region along with effects on several biologic features of melanoma cells. The ectopic expression of the paRNA to TYR did not have any effect. Overall, our work indicates that paRNAs may serve as an additional layer in the regulation of gene expression in melanoma, thus meriting further investigation.

2.
Eur J Gastroenterol Hepatol ; 20(12): 1205-13, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18989145

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in industrialized countries. It has no accepted medical therapy. Fatty acid-bile acid conjugates (FABACs) were proven to prevent diet-induced NAFLD in rodents. AIM: This study was undertaken to test whether oral FABACs are also effective in reducing liver fat in preestablished diet-induced NAFLD. METHODS: NAFLD was induced in mice and rats by a high-fat diet and maintained by various proportions thereof. The FABACs used were conjugates of cholic acid with either arachidic or stearic acids. RESULTS: FABAC therapy reduced liver fat in all four series of experiments. The rapidity of the effect was inversely proportional to the concentration of fat in the maintenance diet. In mice on a 25% maintenance diet FABACs decreased total liver lipids by about 30% in 4 weeks (P<0.03). Diglycerides (P<0.003) and triglycerides (P<0.01) were the main neutral liver lipids that decreased during FABAC therapy. Both FABACs tested reduced liver fat in NAFLD at doses of 25 and 150 mg/kg/day. High-fat diet increased, whereas FABAC therapy decreased plasma 16 : 1/(16 : 0+16 : 1) fatty acid ratio - a marker of stearoyl CoA desaturase activity. In HepG2 cells FABACs decreased de-novo fatty acid synthesis dose dependently. CONCLUSION: Oral FABAC therapy decreased liver fat in preestablished NAFLD in mice and rats. Inhibition of stearoyl CoA desaturase activity and fatty acid synthesis are mechanisms that may contribute to this decrease. FABACs may be potential therapeutic agents for human NAFLD.


Subject(s)
Bile Acids and Salts/therapeutic use , Dietary Fats/adverse effects , Fatty Acids/therapeutic use , Fatty Liver/drug therapy , Animals , Blood Glucose/metabolism , Cholic Acids/therapeutic use , Dietary Fats/administration & dosage , Disease Models, Animal , Drug Evaluation, Preclinical , Fatty Acids/biosynthesis , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/pathology , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Rats , Rats, Inbred F344 , Stearoyl-CoA Desaturase/blood , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...