Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heart Rhythm O2 ; 1(5): 368-375, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33748801

ABSTRACT

BACKGROUND: Life-threatening arrhythmias resulting from genetic mutations are often missed in current electrocardiogram (ECG) analysis. We combined a new method for ECG analysis that uses all the waveform data with machine learning to improve detection of such mutations from short ECG signals in a mouse model. OBJECTIVE: We sought to detect consequences of Na+ channel deficiencies known to compromise action potential conduction in comparisons of Scn5a+/- mutant and wild-type mice using short ECG signals, examining novel and standard features derived from lead I and II ECG recordings by machine learning algorithms. METHODS: Lead I and II ECG signals from anesthetized wild-type and Scn5a+/- mutant mice of length 130 seconds were analyzed by extracting various groups of features, which were used by machine learning to classify the mice as wild-type or mutant. The features used were standard ECG intervals and amplitudes, as well as features derived from attractors generated using the novel Symmetric Projection Attractor Reconstruction method, which reformulates the whole signal as a bounded, symmetric 2-dimensional attractor. All the features were also combined as a single feature group. RESULTS: Classification of genotype using the attractor features gave higher accuracy than using either the ECG intervals or the intervals and amplitudes. However, the highest accuracy (96%) was obtained using all the features. Accuracies for different subgroups of the data were obtained and compared. CONCLUSION: Detection of the Scn5a+/- mutation from short mouse ECG signals with high accuracy is possible using our Symmetric Projection Attractor Reconstruction method.

2.
Proc Math Phys Eng Sci ; 472(2189): 20150777, 2016 May.
Article in English | MEDLINE | ID: mdl-27279764

ABSTRACT

The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest's theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...