Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28784678

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) resistant to decolonization agents such as mupirocin and chlorhexidine increases the need for development of alternative decolonization molecules. The absence of reported severe adverse reactions and bacterial resistance to polyhexanide makes it an excellent choice as a topical antiseptic. In the present study, we evaluated the in vitro and in vivo capacity to generate strains with reduced polyhexanide susceptibility and cross-resistance with chlorhexidine and/or antibiotics currently used in clinic. Here we report the in vitro emergence of reduced susceptibility to polyhexanide by prolonged stepwise exposure to low concentrations in broth culture. Reduced susceptibility to polyhexanide was associated with genomic changes in the mprF and purR genes and with concomitant decreased susceptibility to daptomycin and other cell wall-active antibiotics. However, the in vitro emergence of reduced susceptibility to polyhexanide did not result in cross-resistance to chlorhexidine. During in vivo polyhexanide clinical decolonization treatment, neither reduced polyhexanide susceptibility nor chlorhexidine cross-resistance was observed. Together, these observations suggest that polyhexanide could be used safely for decolonization of carriers of chlorhexidine-resistant S. aureus strains; they also highlight the need for careful use of polyhexanide at low antiseptic concentrations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents, Local/pharmacology , Biguanides/pharmacology , Drug Resistance, Bacterial/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Aminoacyltransferases/genetics , Bacterial Proteins/genetics , Cell Wall/drug effects , Chlorhexidine/pharmacology , Daptomycin/pharmacology , High-Throughput Nucleotide Sequencing , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Repressor Proteins/genetics , Staphylococcal Infections/drug therapy
2.
Eur J Clin Microbiol Infect Dis ; 36(2): 343-350, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27744604

ABSTRACT

Ceftaroline is a broad-spectrum antibiotic with activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ceftaroline susceptibility of an MRSA set archived between 1994 and 2003 in the Geneva University Hospitals detected a high percentage (66 %) of ceftaroline resistance in clonotypes ST228 and ST247 and correlated with mutations in PBP2a. The ceftaroline mechanism of action is based on the inhibition of PBP2a; thus, the identification of PBP2a mutations of recently circulating clonotypes in our institution was investigated. We analyzed ceftaroline susceptibility in MRSA isolates (2013 and 2014) and established that resistant strains correlated with PBP2a mutations and specific clonotypes. Ninety-six MRSA strains were analyzed from independent patients and were isolated from blood cultures (23 %), deep infections (38.5 %), and superficial (skin or wound) infections (38.5 %). This sample showed a ceftaroline minimum inhibitory concentration (MIC) range between 0.25 and 2 µg/ml and disk diameters ranging from 10 to 30 mm, with a majority of strains showing diameters ≥20 mm. Based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, 76 % (73/96) of isolates showed susceptibility to ceftaroline. Nevertheless, we still observed 24 % (23/96) of resistant isolates (MIC = 2 µg/ml). All resistant isolates were assigned to clonotype ST228 and carried the N146K mutation in PBP2a. Only two ST228 isolates showed ceftaroline susceptibility. The decreasing percentage of ceftaroline-resistant isolates in our hospital can be explained by the decline of ST228 clonotype circulating in our hospital since 2008. We present evidence that ceftaroline is active against recent MRSA strains from our hospital; however, the presence of PBP2a variants in particular clonotypes may affect ceftaroline efficacy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Drug Resistance, Bacterial , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/microbiology , Bacterial Proteins/genetics , Genotype , Hospitals, University , Humans , Italy/epidemiology , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Molecular Typing , Mutation , Penicillin-Binding Proteins/genetics , Prevalence , Staphylococcal Infections/epidemiology , Ceftaroline
3.
Int J Med Microbiol ; 304(3-4): 284-99, 2014 May.
Article in English | MEDLINE | ID: mdl-24275081

ABSTRACT

In Staphylococcus aureus, the role of the GGDEF domain-containing protein GdpS remains poorly understood. Previous studies reported that gdpS mutant strains had decreased biofilm formation due to changes in icaADBC expression that were independent of cyclic-di-GMP levels. We deleted gdpS in three unrelated S. aureus isolates, and analyzed the resultant mutants for alterations in biofilm formation, metabolism and transcription. Dynamic imaging during biofilm development showed that GdpS inhibited early biofilm formation in only two out of the three strains examined, without affecting bacterial survival. However, quantification of biofilm formation using crystal violet staining revealed that inactivation of gdpS affected biofilm formation in all three studied strains. Extraction of metabolites from S. aureus cells confirmed the absence of cyclic-di-GMP, suggesting that biofilm formation in this species differs from that in other Gram-positive organisms. In addition, targeted mutagenesis demonstrated that the GGDEF domain was not required for GdpS activity. Transcriptomic analysis revealed that the vast majority of GGDEF-regulated genes were involved in virulence, metabolism, cell wall biogenesis and eDNA release. Finally, expression of lrgAB or deletion of cidABC in a strain lacking gdpS confirmed the role of GdpS on regulation of eDNA production that occurred without an increase in cell autolysis, but with a late increase in holin-mediated autolysis, in the presence of high oxacillin concentrations. In summary, S. aureus GdpS contributes to cell-to-cell interactions during early biofilm formation by influencing expression of lrgAB and cidABC mediated eDNA release. We conclude that GdpS acts as a negative regulator of eDNA release.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , DNA, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Staphylococcus aureus/physiology , Transcription Factors/metabolism , Bacterial Proteins/genetics , Gene Deletion , Gene Expression Profiling , Humans , Optical Imaging , Staphylococcus aureus/genetics , Transcription Factors/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...