Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 22(5)2017 Apr 30.
Article in English | MEDLINE | ID: mdl-28468296

ABSTRACT

The environmental levels of selenium (Se) are regulated and strictly enforced by the Environmental Protection Agency (EPA) because of the toxicity that Se can exert at high levels. However, speciation plays an important role in the overall toxicity of Se, and only when speciation analysis has been conducted will a detailed understanding of the system be possible. In the following, we carried out the speciation analysis of the creek waters in three of the main tributaries-Upper Fountain Creek, Monument Creek and Lower Fountain Creek-located in the Fountain Creek Watershed (Colorado, USA). There are statistically significant differences between the Se, Ca and Mg, levels in each of the tributaries and seasonal swings in Se, Ca and Mg levels have been observed. There are also statistically significant differences between the Se levels when grouped by Pierre Shale type. These factors are considered when determining the forms of Se present and analyzing their chemistry using the reported thermodynamic relationships considering Ca2+, Mg2+, SeO42-, SeO32- and carbonates. This analysis demonstrated that the correlation between Se and water hardness can be explained in terms of formation of soluble CaSeO4. The speciation analysis demonstrated that for the Fountain Creek waters, the Ca2+ ion may be mainly responsible for the observed correlation with the Se level. Considering that the Mg2+ level is also correlating linearly with the Se levels it is important to recognize that without Mg2+ the Ca2+ would be significantly reduced. The major role of Mg2+ is thus to raise the Ca2+ levels despite the equilibria with carbonate and other anions that would otherwise decrease Ca2+ levels.


Subject(s)
Calcium/analysis , Magnesium/analysis , Selenium/analysis , Water Pollutants, Chemical/analysis , Colorado , Rivers/chemistry , Seasons , Thermodynamics , Water Quality
2.
J Biol Inorg Chem ; 22(5): 751-763, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28447172

ABSTRACT

Se is an environmental concern as it can be toxic if present in high concentrations even though it is a dietary requirement for all animals. Se levels are a special concern in the Fountain Creek Watershed located in southeastern Colorado whose geological source is the Se-rich Pierre Shale. Segments of Fountain Creek have Se water levels that exceed the current EPA limit of 5 µg/l. In the studies described here, the effects of river water containing selenium were examined on fish populations at different sites along the Fountain Creek Watershed. Based on the hypothesis that high levels of Se present in the Creek and resident bryophytes should be an indicator of diversity in the river fish we explored the possibility that the low toxicity of the selenium could be due to speciation. A speciation analysis was conducted to determine the selenium(IV) and selenium(VI). Our results show that sites with higher ratios of the more toxic Se(IV) relative to total selenium exhibit lower fish diversity and number of fish. Our results indicate that factors, other than total Se, such as Se speciation may be involved in controlling the bioavailability and toxicity of this element to aquatic organisms in Fountain Creek.


Subject(s)
Biodiversity , Environmental Exposure/analysis , Fresh Water/analysis , Selenium/analysis , Animals , Environmental Monitoring , Fishes
3.
Chemistry ; 20(17): 5149-59, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24615733

ABSTRACT

We explore the interactions of V(III) -, V(IV) -, and V(V) -2,6-pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood-glucose-lowering effects of these compounds on STZ-induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2-ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self-assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the V(III) -phospholipid interactions result in a slight decrease in DPPC molecular area, whereas V(IV) and V(V) -phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of V(III) - and V(IV) -dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of V(IV) complexes in reverse micelles indicate that the neutral and smaller 1:1 V(IV) -dipic complex penetrates the interface, whereas the larger 1:2 V(IV) complex does not. UV/Vis spectroscopy studies of the anionic V(III) -dipic complex show only minor interactions. These results are in contrast to behavior of the V(V) -dipic complex, [VO2 (dipic)](-) , which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that V(III) -, V(IV) -, and V(V) -dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds' efficacy at lowering elevated blood glucose levels in diabetic rats.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/metabolism , Coordination Complexes/pharmacokinetics , Dioctyl Sulfosuccinic Acid/metabolism , Hypoglycemic Agents/pharmacokinetics , Micelles , Pyridines/pharmacokinetics , Vanadium/pharmacokinetics , Animals , Coordination Complexes/chemistry , Diabetes Mellitus, Experimental/drug therapy , Electron Spin Resonance Spectroscopy , Hypoglycemic Agents/chemistry , Insulin/metabolism , Membranes, Artificial , Picolinic Acids , Pyridines/chemistry , Rats , Vanadium/chemistry
4.
J Org Chem ; 73(24): 9633-40, 2008 Dec 19.
Article in English | MEDLINE | ID: mdl-19053583

ABSTRACT

The possibility that a negatively charged organic molecule penetrates the lipid interface in a reverse micellar system is examined using UV-vis absorption and NMR spectroscopy. The hypothesis that deprotonated forms of dipicolinic acid, H(2)dipic, such as Hdipic(-) and dipic(2-), can penetrate the lipid interface in a microemulsion is based on our previous finding that the insulin-enhancing anionic [VO(2)dipic](-) complex was found to reside in the hydrophobic layer of the reverse micelle (Crans et al. J. Am. Chem. Soc. 2006, 128, 4437-4445). Penetration of a polar and charged compound, namely Hdipic(-) or dipic(2-), into a hydrophobic environment is perhaps unexpected given the established rules regarding the fundamental properties of compound solubility. As such, this work has broad implications in organic chemistry and other disciplines of science. These studies required a comprehensive investigation of the different dipic species and their association in aqueous solutions at varying pH values. Combining the aqueous studies using absorption and NMR spectroscopy with those in microemulsions defines the differences observed in the heterogeneous environment. Despite the expected repulsion between the surfactant head groups and the dianionic probe molecule, these studies demonstrate that dipic resides deep in the hydrophobic portion of the reverse micellar interface. In summary, these results provide evidence that ionic molecules can reside in nonpolar locations in microheterogeneous environments. This suggests that additional factors such as solvation are important to molecule location. Documented ability to penetrate lipid surfaces of similar charge provides a rationale for why specific drugs with less than optimal hydrophobicity are successful even though they violate Lipinski's rules.

SELECTION OF CITATIONS
SEARCH DETAIL
...