Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Front Chem ; 11: 1113885, 2023.
Article in English | MEDLINE | ID: mdl-37214482

ABSTRACT

Virulence gene expression in the human pathogen, S. aureus is regulated by the agr (accessory gene regulator) quorum sensing (QS) system which is conserved in diverse Gram-positive bacteria. The agr QS signal molecule is an autoinducing peptide (AIP) generated via the initial processing of the AgrD pro-peptide by the transmembrane peptidase AgrB. Since structural information for AgrB and AgrBD interactions are lacking, we used homology modelling and molecular dynamics (MD) annealing to characterise the conformations of AgrB and AgrD in model membranes and in solution. These revealed a six helical transmembrane domain (6TMD) topology for AgrB. In solution, AgrD behaves as a disordered peptide, which binds N-terminally to membranes in the absence and in the presence of AgrB. In silico, membrane complexes of AgrD and dimeric AgrB show non-equivalent AgrB monomers responsible for initial binding and for processing, respectively. By exploiting split luciferase assays in Staphylococcus aureus, we provide experimental evidence that AgrB interacts directly with itself and with AgrD. We confirmed the in vitro formation of an AgrBD complex and AIP production after Western blotting using either membranes from Escherichia coli expressing AgrB or with purified AgrB and T7-tagged AgrD. AgrB and AgrD formed stable complexes in detergent micelles revealed using synchrotron radiation CD (SRCD) and Landau analysis consistent with the enhanced thermal stability of AgrB in the presence of AgrD. Conformational alteration of AgrB following provision of AgrD was observed by small angle X-ray scattering from proteodetergent micelles. An atomistic description of AgrB and AgrD has been obtained together with confirmation of the AgrB 6TMD membrane topology and existence of AgrBD molecular complexes in vitro and in vivo.

2.
Metab Eng ; 72: 133-149, 2022 07.
Article in English | MEDLINE | ID: mdl-35289291

ABSTRACT

Robust systematic approaches for the metabolic engineering of cell factories remain elusive. The available models for predicting phenotypical responses and mechanisms are incomplete, particularly within the context of compound toxicity that can be a significant impediment to achieving high yields of a target product. This study describes a Multi-Omic Based Production Strain Improvement (MOBpsi) strategy that is distinguished by integrated time-resolved systems analyses of fed-batch fermentations. As a case study, MOBpsi was applied to improve the performance of an Escherichia coli cell factory producing the commodity chemical styrene. Styrene can be bio-manufactured from phenylalanine via an engineered pathway comprised of the enzymes phenylalanine ammonia lyase and ferulic acid decarboxylase. The toxicity, hydrophobicity, and volatility of styrene combine to make bio-production challenging. Previous attempts to create styrene tolerant E. coli strains by targeted genetic interventions have met with modest success. Application of MOBpsi identified new potential targets for improving performance, resulting in two host strains (E. coli NST74ΔaaeA and NST74ΔaaeA cpxPo) with increased styrene production. The best performing re-engineered chassis, NST74ΔaaeA cpxPo, produced ∼3 × more styrene and exhibited increased viability in fed-batch fermentations. Thus, this case study demonstrates the utility of MOBpsi as a systematic tool for improving the bio-manufacturing of toxic chemicals.


Subject(s)
Escherichia coli , Metabolic Engineering , Escherichia coli/metabolism , Fermentation , Metabolic Engineering/methods , Phenylalanine/genetics , Phenylalanine/metabolism , Styrene/metabolism
3.
Langmuir ; 38(4): 1348-1359, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35045250

ABSTRACT

Biofermentative production of styrene from renewable carbon sources is crucially dependent on strain tolerance and viability at elevated styrene concentrations. Solvent-driven collapse of bacterial plasma membranes limits yields and is technologically restrictive. Styrene is a hydrophobic solvent that readily partitions into the membrane interior and alters membrane-chain order and packing. We investigate styrene incorporation into model membranes and the role lipid chains play as determinants of membrane stability in the presence of styrene. MD simulations reveal styrene phase separation followed by irreversible segregation into the membrane interior. Solid state NMR shows committed partitioning of styrene into the membrane interior with persistence of the bilayer phase up to 67 mol % styrene. Saturated-chain lipid membranes were able to retain integrity even at 80 mol % styrene, whereas in unsaturated lipid membranes, we observe the onset of a non-bilayer phase of small lipid aggregates in coexistence with styrene-saturated membranes. Shorter-chain saturated lipid membranes were seen to tolerate styrene better, which is consistent with observed chain length reduction in bacteria grown in the presence of small molecule solvents. Unsaturation at mid-chain position appears to reduce the membrane tolerance to styrene and conversion from cis- to trans-chain unsaturation does not alter membrane phase stability but the lipid order in trans-chains is less affected than cis.


Subject(s)
Lipid Bilayers , Phosphatidylcholines , Cell Membrane/metabolism , Lipid Bilayers/chemistry , Membranes/metabolism , Phosphatidylcholines/chemistry , Styrene
4.
Faraday Discuss ; 232(0): 317-329, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34550139

ABSTRACT

Bacterial resistance to antibiotics constantly remodels the battlefront between infections and antibiotic therapy. Polymyxin B, a cationic peptide with an anti-Gram-negative spectrum of activity is re-entering use as a last resort measure and as an adjuvant. We use fluorescence dequenching to investigate the role of the rough chemotype bacterial lipopolysaccharide from E. coli BL21 as a molecular facilitator of membrane disruption by LPS. The minimal polymyxin B/lipid ratio required for leakage onset increased from 5.9 × 10-4 to 1.9 × 10-7 in the presence of rLPS. We confirm polymyxin B activity against E. coli BL21 by the agar diffusion method and determined a MIC of 291 µg ml-1. Changes in lipid membrane stability and dynamics in response to polymyxin and the role of LPS are investigated by 31P NMR and high resolution 31P MAS NMR relaxation is used to monitor selective molecular interactions between polymyxin B and rLPS within bilayer lipid membranes. We observe a strong facilitating effect from rLPS on the membrane lytic properties of polymyxin B and a specific, pyrophosphate-mediated process of molecular recognition of LPS by polymyxin B.


Subject(s)
Lipopolysaccharides , Polymyxin B , Anti-Bacterial Agents/pharmacology , Escherichia coli , Polymyxin B/pharmacology , Polymyxins
5.
Biochem Soc Trans ; 49(4): 1505-1513, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34397082

ABSTRACT

Membranes of cells are active barriers, in which membrane proteins perform essential remodelling, transport and recognition functions that are vital to cells. Membrane proteins are key regulatory components of cells and represent essential targets for the modulation of cell function and pharmacological intervention. However, novel folds, low molarity and the need for lipid membrane support present serious challenges to the characterisation of their structure and interactions. We describe the use of solid state NMR as a versatile and informative approach for membrane and membrane protein studies, which uniquely provides information on structure, interactions and dynamics of membrane proteins. High resolution approaches are discussed in conjunction with applications of NMR methods to studies of membrane lipid and protein structure and interactions. Signal enhancement in high resolution NMR spectra through DNP is discussed as a tool for whole cell and interaction studies.


Subject(s)
Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Lipid Bilayers/metabolism , Protein Conformation
6.
Biology (Basel) ; 9(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198410

ABSTRACT

Biological membranes define the interface of life and its basic unit, the cell. Membrane proteins play key roles in membrane functions, yet their structure and mechanisms remain poorly understood. Breakthroughs in crystallography and electron microscopy have invigorated structural analysis while failing to characterise key functional interactions with lipids, small molecules and membrane modulators, as well as their conformational polymorphism and dynamics. NMR is uniquely suited to resolving atomic environments within complex molecular assemblies and reporting on membrane organisation, protein structure, lipid and polysaccharide composition, conformational variations and molecular interactions. The main challenge in membrane protein studies at the atomic level remains the need for a membrane environment to support their fold. NMR studies in membrane mimetics and membranes of increasing complexity offer close to native environments for structural and molecular studies of membrane proteins. Solution NMR inherits high resolution from small molecule analysis, providing insights from detergent solubilised proteins and small molecular assemblies. Solid-state NMR achieves high resolution in membrane samples through fast sample spinning or sample alignment. Recent developments in dynamic nuclear polarisation NMR allow signal enhancement by orders of magnitude opening new opportunities for expanding the applications of NMR to studies of native membranes and whole cells.

7.
Int J Med Microbiol ; 310(5): 151432, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32654774

ABSTRACT

The extracellular signal-regulated kinases (ERKs) serve as important determinants of cellular signal transduction pathways, and hence may play important roles during infections. Previous work suggested that putative ERK7 of Toxoplasma gondii is required for efficient intracellular replication of the parasite. However, the antigenic and immunostimulatory properties of TgERK7 protein remain unknown. The objective of this study was to produce a recombinant TgERK7 protein in vitro and to evaluate its effect on the induction of humoral and T cell-mediated immune responses against T. gondii infection in BALB/c mice. Immunization using TgERK7 mixed with Freund's adjuvants significantly increased the ratio of CD3e+CD4+ T/CD3e+CD8a+ T lymphocytes in spleen and elevated serum cytokines (IFN-γ, IL-2, IL-4, IL-10, IL-12p70, IL-23, MCP-1, and TNF-α) in immunized mice compared to control mice. On the contrary, immunization did not induce high levels of serum IgG antibodies. Five predicted peptides of TgERK7 were synthesized and conjugated with KLH and used to analyze the antibody specificity in the sera of immunized mice. We detected a progressive increase in the antibody level only against TgERK7 peptide A (DEVDKHVLRKYD). Antibody raised against this peptide significantly decreased intracellular proliferation of T. gondii in vitro, suggesting that peptide A can potentially induce a protective antibody response. We also showed that immunization improved the survival rate of mice challenged with a virulent strain and significantly reduced the parasite cyst burden within the brains of chronically infected mice. Our data show that TgERK7-based immunization induced TgERK7 peptide A-specific immune responses that can impart protective immunity against T. gondii infection. The therapeutic potential of targeting ERK7 signaling pathway for future toxoplasmosis treatment is warranted.


Subject(s)
Antigens, Protozoan/immunology , Extracellular Signal-Regulated MAP Kinases/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/genetics , Cytokines/blood , Extracellular Signal-Regulated MAP Kinases/genetics , Female , Immunity, Cellular , Immunity, Humoral , Immunization , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Peptides/chemistry , Peptides/genetics , Protein Conformation , Protozoan Vaccines/immunology , Rabbits , Recombinant Proteins/immunology , Toxoplasma/genetics
8.
Langmuir ; 36(33): 9649-9657, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32202793

ABSTRACT

Bioproduction of poly(methyl methacrylate) is a fast growing global industry that is limited by cellular toxicity of monomeric methacrylate intermediates to the producer strains. Maintaining high methacrylate concentrations during biofermentation, required by economically viable technologies, challenges bacterial membrane stability and cellular viability. Studying the stability of model lipid membranes in the presence of methacrylates offers unique molecular insights into the mechanisms of methacrylate toxicity, as well as into the fundamental structural bases of membrane assembly. We investigate the structure and stability of model membranes in the presence of high levels of methacrylate esters using solid-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS). Wide-line 31P NMR spectroscopy shows that butyl methacrylate (BMA) can be incorporated into the lipid bilayer at concentrations as high as 75 mol % without significantly disrupting membrane integrity and that lipid acyl chain composition can influence membrane tolerance and ability to accommodate BMA. Using high resolution 13C magic angle spinning (MAS) NMR, we show that the presence of 75 mol % BMA lowers the lipid main transition temperature by over 12 degrees, which suggests that BMA intercalates between the lipid chains, causing uncoupling of collective lipid motions that are typically dominated by chain trans-gauche isomerization. Potential uncoupling of the bilayer leaflets to accommodate a separate BMA subphase was not supported by the SAXS experiments, which showed that membrane thickness remained unchanged even at 80% BMA. Reduced X-ray scattering contrast at the polar/apolar interface suggests BMA localization in that region between the lipid molecules.

9.
J Bacteriol ; 201(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31358609

ABSTRACT

Mutations in the polymorphic Staphylococcus aureusagr locus responsible for quorum sensing (QS)-dependent virulence gene regulation occur frequently during host adaptation. In two genomically closely related S. aureus clinical isolates exhibiting marked differences in Panton-Valentine leukocidin production, a mutation conferring an N267I substitution was identified in the cytoplasmic domain of the QS sensor kinase, AgrC. This natural mutation delayed the onset and accumulation of autoinducing peptide (AIP) and showed reduced responsiveness to exogenous AIPs. Other S. aureus strains harboring naturally occurring AgrC cytoplasmic domain mutations were identified, including T247I, I311T, A343T, L245S, and F264C. These mutations were associated with reduced cytotoxicity, delayed/reduced AIP production, and impaired sensitivity to exogenous AIP. Molecular dynamics simulations were used to model the AgrC cytoplasmic domain conformational changes arising. Although mutations were localized in different parts of the C-terminal domain, their impact on molecular structure was manifested by twisting of the leading helical hairpin α1-α2, accompanied by repositioning of the H-box and G-box, along with closure of the flexible loop connecting the two and occlusion of the ATP-binding site. Such conformational rearrangements of key functional subdomains in these mutants highlight the cooperative response of molecular structure involving dimerization and ATP binding and phosphorylation, as well as the binding site for the downstream response element AgrA. These appear to increase the threshold for agr activation via AIP-dependent autoinduction, thus reducing virulence and maintaining S. aureus in an agr-downregulated "colonization" mode.IMPORTANCE Virulence factor expression in Staphylococcus aureus is regulated via autoinducing peptide (AIP)-dependent activation of the sensor kinase AgrC, which forms an integral part of the agr quorum sensing system. In response to bound AIP, the cytoplasmic domain of AgrC (AgrC-cyt) undergoes conformational changes resulting in dimerization, autophosphorylation, and phosphotransfer to the response regulator AgrA. Naturally occurring mutations in AgrC-cyt are consistent with repositioning of key functional domains, impairing dimerization and restricting access to the ATP-binding pocket. Strains harboring specific AgrC-cyt mutations exhibit reduced AIP autoinduction efficiency and a timing-dependent attenuation of cytotoxicity which may confer a survival advantage during established infection by promoting colonization while restricting unnecessary overproduction of exotoxins.


Subject(s)
Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Peptides, Cyclic/metabolism , Protein Kinases/chemistry , Protein Kinases/genetics , Staphylococcus aureus/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Cytoplasm/metabolism , Models, Molecular , Molecular Dynamics Simulation , Phosphorylation , Protein Binding , Protein Domains , Protein Kinases/metabolism , Protein Multimerization , Protein Structure, Secondary , Quorum Sensing , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Time Factors , Trans-Activators/metabolism
10.
Biochim Biophys Acta Biomembr ; 1861(1): 83-92, 2019 01.
Article in English | MEDLINE | ID: mdl-30296414

ABSTRACT

Nisin is a lanthionine antimicrobial effective against diverse Gram-positive bacteria and is used as a food preservative worldwide. Its action is mediated by pyrophosphate recognition of the bacterial cell wall receptors lipid II and undecaprenyl pyrophosphate. Nisin/receptor complexes disrupt cytoplasmic membranes, inhibit cell wall synthesis and dysregulate bacterial cell division. Gram-negative bacteria are much more tolerant to antimicrobials including nisin. In contrast to Gram-positives, Gram-negative bacteria possess an outer membrane, the major constituent of which is lipopolysaccharide (LPS). This contains surface exposed phosphate and pyrophosphate groups and hence can be targeted by nisin. Here we describe the impact of LPS on membrane stability in response to nisin and the molecular interactions occurring between nisin and membrane-embedded LPS from different Gram-negative bacteria. Dye release from liposomes shows enhanced susceptibility to nisin in the presence of LPS, particularly rough LPS chemotypes that lack an O-antigen whereas LPS from microorganisms sharing similar ecological niches with antimicrobial producers provides only modest enhancement. Increased susceptibility was observed with LPS from pathogenic Klebsiella pneumoniae compared to LPS from enteropathogenic Salmonella enterica and gut commensal Escherichia coli. LPS from Brucella melitensis, an intra-cellular pathogen which is adapted to invade professional and non-professional phagocytes, appears to be refractory to nisin. Molecular complex formation between nisin and LPS was studied by solid state MAS NMR and revealed complex formation between nisin and LPS from most organisms investigated except B. melitensis. LPS/nisin complex formation was confirmed in outer membrane extracts from E. coli.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Lipopolysaccharides/chemistry , Nisin/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Brucella melitensis/metabolism , Cell Membrane/metabolism , Escherichia coli/metabolism , Food Preservatives , Klebsiella pneumoniae/metabolism , Lipid A/chemistry , Magnetic Resonance Spectroscopy , Membranes/chemistry , Microbial Sensitivity Tests , O Antigens/chemistry , Phenotype , Phospholipids/chemistry , Salmonella enterica/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives
11.
J Phys Chem B ; 122(8): 2213-2218, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29401389

ABSTRACT

Thermal unfolding of proteins is used extensively in screening of drug candidates because molecular interactions with ligands and substrates affect strongly protein stability, transition temperature, and cooperativity. We use synchrotron radiation circular dichroism to monitor the thermal evolution of secondary structure in proteins as they approach the melting point and the impact of substrate on their thermal behavior. Using Landau free energy expansion, we quantify transition strength and proximity to a critical point through the relative separation τ+ between the transition temperature Tm and the spinodal T+, obtained from the equation of state. The weakest transition was observed in lysozyme with τ+ = -0.0167 followed by holo albumin with τ+ = -0.0208 with the strongest transition in monomeric apo albumin τ+ = -0.0242. A structural transition at 45 °C in apo albumin leads to a noncooperative melt with τ+ = -0.00532 and amyloidogenic increase in beta content.


Subject(s)
Proteins/chemistry , Thermodynamics , Binding Sites , Protein Stability , Protein Unfolding
12.
Adv Exp Med Biol ; 922: 29-42, 2016.
Article in English | MEDLINE | ID: mdl-27553233

ABSTRACT

Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current capabilities and future potential of NMR for membrane protein structural biology and ligand discovery.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Animals , Cell Membrane/chemistry , Cell Membrane/ultrastructure , Humans , Isotope Labeling/methods , Magnetic Resonance Spectroscopy/instrumentation , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Protein Folding , Recombinant Fusion Proteins/chemistry , Software
13.
Front Cell Dev Biol ; 4: 57, 2016.
Article in English | MEDLINE | ID: mdl-27379235

ABSTRACT

The molecular action of polyene macrolides with antifungal activity, amphotericin B and natamycin, involves recognition of sterols in membranes. Physicochemical and functional studies have contributed details to understanding the interactions between amphotericin B and ergosterol and, to a lesser extent, with cholesterol. Fewer molecular details are available on interactions between natamycin with sterols. We use solid state (13)C MAS NMR to characterize the impact of amphotericin B and natamycin on mixed lipid membranes of DOPC/cholesterol or DOPC/ergosterol. In cholesterol-containing membranes, amphotericin B addition resulted in marked increase in both DOPC and cholesterol (13)C MAS NMR linewidth, reflecting membrane insertion and cooperative perturbation of the bilayer. By contrast, natamycin affects little either DOPC or cholesterol linewidth but attenuates cholesterol resonance intensity preferentially for sterol core with lesser impact on the chain. Ergosterol resonances, attenuated by amphotericin B, reveal specific interactions in the sterol core and chain base. Natamycin addition selectively augmented ergosterol resonances from sterol core ring one and, at the same time, from the end of the chain. This puts forward an interaction model similar to the head-to-tail model for amphotericin B/ergosterol pairing but with docking on opposite sterol faces. Low toxicity of natamycin is attributed to selective, non-cooperative sterol engagement compared to cooperative membrane perturbation by amphotericin B.

14.
Sci Rep ; 6: 21185, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26888784

ABSTRACT

Lanthionine antibiotics are an important class of naturally-occurring antimicrobial peptides. The best-known, nisin, is a commercial food preservative. However, structural and mechanistic details on nisin-lipid II membrane complexes are currently lacking. Recently, we have developed empirical force-field parameters to model lantibiotics. Docking and molecular dynamics (MD) simulations have been used to study the nisin2:lipid II complex in bacterial membranes, which has been put forward as the building block of nisin/lipid II binary membrane pores. An Ile1Trp mutation of the N-terminus of nisin has been modelled and docked onto lipid II models; the computed binding affinity increased compared to wild-type. Wild-type nisin was also docked onto three different lipid II structures and a stable 2:1 nisin:lipid II complex formed. This complex was inserted into a membrane. Six independent MD simulations revealed key interactions in the complex, specifically the N-terminal engagement of nisin with lipid II at the pyrophosphate and C-terminus of the pentapeptide chain. Nisin(2) inserts into the membrane and we propose this as the first step in pore formation, mediated by the nisin N-terminus-lipid II pentapeptide hydrogen bond. The lipid II undecaprenyl chain adopted different conformations in the presence of nisin, which may also have implications for pore formation.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Nisin/chemistry , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/chemistry
15.
J Biol Chem ; 288(44): 31938-51, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24019531

ABSTRACT

Exopolysaccharides were isolated and purified from Lactobacillus johnsonii FI9785, which has previously been shown to act as a competitive exclusion agent to control Clostridium perfringens in poultry. Structural analysis by NMR spectroscopy revealed that L. johnsonii FI9785 can produce two types of exopolysaccharide: EPS-1 is a branched dextran with the unusual feature that every backbone residue is substituted with a 2-linked glucose unit, and EPS-2 was shown to have a repeating unit with the following structure: -6)-α-Glcp-(1-3)-ß-Glcp-(1-5)-ß-Galf-(1-6)-α-Glcp-(1-4)-ß-Galp-(1-4)-ß-Glcp-(1-. Sites on both polysaccharides were partially occupied by substituent groups: 1-phosphoglycerol and O-acetyl groups in EPS-1 and a single O-acetyl group in EPS-2. Analysis of a deletion mutant (ΔepsE) lacking the putative priming glycosyltransferase gene located within a predicted eps gene cluster revealed that the mutant could produce EPS-1 but not EPS-2, indicating that epsE is essential for the biosynthesis of EPS-2. Atomic force microscopy confirmed the localization of galactose residues on the exterior of wild type cells and their absence in the ΔepsE mutant. EPS2 was found to adopt a random coil structural conformation. Deletion of the entire 14-kb eps cluster resulted in an acapsular mutant phenotype that was not able to produce either EPS-2 or EPS-1. Alterations in the cell surface properties of the EPS-specific mutants were demonstrated by differences in binding of an anti-wild type L. johnsonii antibody. These findings provide insights into the biosynthesis and structures of novel exopolysaccharides produced by L. johnsonii FI9785, which are likely to play an important role in biofilm formation, protection against harsh environment of the gut, and colonization of the host.


Subject(s)
Lactobacillus/metabolism , Polysaccharides, Bacterial/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbohydrate Conformation , Genes, Bacterial/physiology , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Lactobacillus/chemistry , Lactobacillus/genetics , Multigene Family/physiology , Mutation , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/genetics
16.
Biochim Biophys Acta ; 1828(8): 1731-42, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23567915

ABSTRACT

Lipopolysaccharide (LPS) is a major component of the external leaflet of bacterial outer membranes, key pro-inflammatory factor and an important mediator of host-pathogen interactions. In host cells it activates the complement along with a pro-inflammatory response via a TLR4-mediated signalling cascade and shows preference for cholesterol-containing membranes. Here, we use solid state (13)C and (31)P MAS NMR to investigate the interactions of LPS from three bacterial species, Brucella melitensis, Klebsiella pneumoniae and Escherichia coli, with mixed lipid membranes, raft models. All endotoxin types are found to be pyrophosphorylated and Klebsiellar LPS is phosphonylated, as well. Carbon-13 MAS NMR indicates an increase in lipid order in the presence of LPS. Longitudinal (31)P relaxation, providing a direct probe of LPS molecular and segmental mobility, reveals a significant reduction in (31)P T1 times and lower molecular mobility in the presence of ternary lipid mixtures. Along with the ordering effect on membrane lipid, this suggests a preferential partitioning of LPS into ordered bilayer sphingomyelin/cholesterol-rich domains. We hypothesise that this is an important evolutionary drive for the selection of GPI-anchored raft-associated LPS-binding proteins as a first line of response to membrane-associated LPS.


Subject(s)
Cell Membrane/metabolism , Lipid Bilayers/metabolism , Lipopolysaccharides/metabolism , Magnetic Resonance Spectroscopy , Membrane Lipids/metabolism , Membrane Microdomains/metabolism , Phospholipids/metabolism , Brucella melitensis/physiology , Escherichia coli/physiology , Host-Pathogen Interactions , Klebsiella pneumoniae/physiology , Models, Molecular
17.
PLoS One ; 7(6): e38677, 2012.
Article in English | MEDLINE | ID: mdl-22685597

ABSTRACT

Lipopolysaccharide (LPS) is a major constituent of bacterial outer membranes where it makes up the bulk of the outer leaflet and plays a key role as determinant of bacterial interactions with the host. Membrane-free LPS is known to activate T-lymphocytes through interactions with Toll-like receptor 4 via multiprotein complexes. In the present study, we investigate the role of cholesterol and membrane heterogeneities as facilitators of receptor-independent LPS binding and insertion, which underpin bacterial interactions with the host in symbiosis, pathogenesis and cell invasion. We use fluorescence spectroscopy to investigate the interactions of membrane-free LPS from intestinal gram-negative organisms with cholesterol-containing model membranes and with T-lymphocytes. LPS preparations from Klebsiella pneumoniae and Salmonella enterica were found to bind preferentially to mixed lipid membranes by comparison to pure PC bilayers. The same was observed for LPS from the symbiote Escherichia coli but with an order of magnitude higher dissociation constant. Insertion of LPS into model membranes confirmed the preference for sphingomyelin/cholesterol-containing systems. LPS insertion into Jurkat T-lymphocyte membranes reveals that they have a significantly greater LPS-binding capacity by comparison to methyl-ß-cyclodextrin cholesterol-depleted lymphocyte membranes, albeit at slightly lower binding rates.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Lipopolysaccharides/metabolism , T-Lymphocytes/metabolism , Binding, Competitive , Cell Membrane/chemistry , Cholesterol/chemistry , Escherichia coli/chemistry , Humans , Jurkat Cells , Kinetics , Klebsiella pneumoniae/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Lipopolysaccharides/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Receptors, Cell Surface/metabolism , Salmonella enterica/chemistry , Spectrometry, Fluorescence , Sphingomyelins/chemistry , Sphingomyelins/metabolism
18.
Chem Biol ; 18(11): 1422-31, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22118676

ABSTRACT

The prion protein (PrP) resides in lipid rafts in vivo, and lipids modulate misfolding of the protein to infectious isoforms. Here we demonstrate that binding of recombinant PrP to model raft membranes requires the presence of ganglioside GM1. A combination of liquid- and solid-state NMR revealed the binding sites of PrP to the saccharide head group of GM1. The binding epitope for GM1 was mapped to the folded C-terminal domain of PrP, and docking simulations identified key residues in the C-terminal region of helix C and the loop between strand S2 and helix B. Crucially, this region of PrP is linked to prion resistance in vivo, and structural changes caused by lipid binding in this region may explain the requirement for lipids in the generation of infectious prions in vitro.


Subject(s)
G(M1) Ganglioside/metabolism , Membrane Microdomains/metabolism , Prions/metabolism , Binding Sites , Computer Simulation , Magnetic Resonance Spectroscopy , Models, Molecular , Prions/chemistry , Prions/genetics , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
19.
Biochemistry ; 49(44): 9594-603, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-20882989

ABSTRACT

Nisin is a polymacrocyclic peptide antimicrobial with high activity against Gram-positive bacteria. Lanthionine and methyllanthionine bridges, closing the macrocycles, are stabilized by thioether bonds, formed between cysteines and dehydrated serine or threonine. The role of polypeptide backbone conformation in the formation of macrocycles A and B within cysteine mutants of nisin residues 1−12 is investigated here by molecular dynamics simulations. Enantiomeric combinational space of Cys3 and Cys7 and of Cys8 and Cys11 is examined for the preference of disulfide bond formation over helical turn formation within this region. A clear preference for spontaneous disulfide formation and closure of rings 3,7 and 8,11 is demonstrated for the D-Cys3, D-Cys7, L-Cys8, L-Cys11 nisin homologue, while interlinked rings A and B are obtained through disulfide bridges between L-Cys3 and D-Cys8 and between D-Cys7 and D-Cys11. This study offers a simple designer approach to solid phase synthesis of macrocyclic peptides and lantibiotic analogues.


Subject(s)
Anti-Bacterial Agents/chemistry , Cysteine/chemistry , Diptera/chemistry , Disulfides/chemistry , Lactococcus lactis/chemistry , Nisin/chemistry , Animals , Molecular Dynamics Simulation , Protein Conformation , Protein Stability , Stereoisomerism , Thermodynamics
20.
Magn Reson Chem ; 48(12): 925-34, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20941803

ABSTRACT

Direct observation of J-couplings remains a challenge in high-resolution solid-state NMR. In some cases, it is possible to use Lee-Goldburg (LG) homonuclear decoupling during rare spin observation in MAS NMR correlation spectroscopy of lipid membranes to obtain J-resolved spectra in the direct dimension. In one simple implementation, a wide line separation-type (13)C-(1)H HETCOR can provide high-resolution (1)H/(13)C spectra, which are J-resolved in both dimensions. Coupling constants, (1)J(HC), obtained from (1)H doublets, can be compared with scaled (1)J(θ)(CH)-values obtained from the (13)C multiplets to assess the LG efficiency and scaling factor. The use of homonuclear decoupling during proton evolution, LG-HETCOR-LG, can provide J-values, at least in the rare spin dimension, and allows measurements in less mobile membrane environments. The LG-decoupled spectroscopic approach is demonstrated on pure dioleoylphosphatidylcholine (DOPC) membranes and used to investigate lipid mixtures of DOPC/cholesterol and DOPC/cholesterol/sphingomyelin.


Subject(s)
Magnetic Resonance Spectroscopy , Membrane Lipids/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...