Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant ; 3(6): 1037-48, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20833735

ABSTRACT

There is increasing evidence that pathogens do not only elicit direct defense responses, but also cause pronounced changes in primary carbohydrate metabolism. Cell-wall-bound invertases belong to the key regulators of carbohydrate partitioning and source-sink relations. Whereas studies have focused so far only on the transcriptional induction of invertase genes in response to pathogen infection, the role of post-translational regulation of invertase activity has been neglected and was the focus of the present study. Expression analyses revealed that the high mRNA level of one out of three proteinaceous invertase inhibitors in source leaves of Arabidopsis thaliana is strongly repressed upon infection by a virulent strain of Pseudomonas syringae pv. tomato DC3000. This repression is paralleled by a decrease in invertase inhibitor activity. The physiological role of this regulatory mechanism is revealed by the finding that in situ invertase activity was detectable only upon infection by P. syringae. In contrast, a high invertase activity could be measured in vitro in crude and cell wall extracts prepared from both infected and non-infected leaves. The discrepancy between the in situ and in vitro invertase activity of control leaves and the high in situ invertase activity in infected leaves can be explained by the pathogen-dependent repression of invertase inhibitor expression and a concomitant reduction in invertase inhibitor activity. The functional importance of the release of invertase from post-translational inhibition for the defense response was substantiated by the application of the competitive chemical invertase inhibitor acarbose. Post-translational inhibition of extracellular invertase activity by infiltration of acarbose in leaves was shown to increase the susceptibility to P. syringae. The impact of invertase inhibition on spatial and temporal dynamics of the repression of photosynthesis and promotion of bacterial growth during pathogen infection supports a role for extracellular invertase in plant defense. The acarbose-mediated increase in susceptibility was also detectable in sid2 and cpr6 mutants and resulted in slightly elevated levels of salicylic acid, demonstrating that the effect is independent of the salicylic acid-regulated defense pathway. These findings provide an explanation for high extractable invertase activity found in source leaves that is kept inhibited in situ by post-translational interaction between invertase and the invertase inhibitor proteins. Upon pathogen infection, the invertase activity is released by repression of invertase inhibitor expression, thus linking the local induction of sink strength to the plant defense response.


Subject(s)
Arabidopsis/genetics , Down-Regulation , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Processing, Post-Translational , beta-Fructofuranosidase/metabolism , Acarbose/pharmacology , Arabidopsis/enzymology , Arabidopsis/microbiology , Arabidopsis/physiology , Carbohydrate Metabolism , Cell Wall/enzymology , Enzyme Inhibitors/metabolism , Plant Diseases/microbiology , Plant Leaves/enzymology , Plant Leaves/microbiology , Plant Leaves/physiology , Pseudomonas syringae/physiology , beta-Fructofuranosidase/antagonists & inhibitors
2.
Funct Plant Biol ; 34(6): 508-516, 2007 Jun.
Article in English | MEDLINE | ID: mdl-32689380

ABSTRACT

Invertases are important enzymes in higher plants, which are involved in regulating developmental processes and responses to external factors. In a functional approach the role of invertases was investigated using transgenic plants ectopically expressing inhibitor proteins to decrease invertase activity. For generating specific effects, these inhibitor proteins were expressed in Arabidopsis under the control of synthetic promoters consisting of tetramers of pathogen-inducible elements, which were reported to yield low constitutive expression. Unexpectedly, seedling growth of putative transgenic plants was arrested at the four-leaf stage. Analysis of ß-glucuronidase activity of corresponding reporter gene lines showed a correlation of the growth arrest with high activity of these promoters in seedlings grown under tissue culture conditions. The negative effect of invertase inhibition on seedling growth was substantiated by transgenic tobacco plants expressing an invertase inhibitor under control of a tetracycline inducible promoter. Ectopic induction of the invertase inhibitor during early seedling development resulted in a reduced fresh weight of seedlings. The importance of invertase in seedling development is further supported by results of expression profiling of invertases in Arabidopsis, which was confirmed by expression analyses. The mRNA for the vacuolar invertases Atßfruct3 and Atßfruct4 and cell wall invertase AtcwINV1 are specifically and strongly expressed during seedling development. These complementing results show that invertase activity is required for normal seedling development.

3.
Planta ; 225(1): 1-12, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16807755

ABSTRACT

Infection of plants with pathogens leads not only to the induction of defence reactions but also to changes in carbohydrate metabolism. In this study, the effects of infection by a virulent and an avirulent strain of P. syringae on spatio-temporal changes in photosynthesis were compared using chlorophyll fluorescence imaging. The maximum PSII quantum yield, effective PSII quantum yield and nonphotochemical quenching were decreased in Arabidopsis leaves infected with either strain. At the same time, the quantum yield of nonregulated energy dissipation was increased. These changes could be detected by chlorophyll fluorescence imaging before symptoms were visible by eye. The effects were restricted to the vicinity of the infection site and did not spread to uninfected areas of the leaf. Qualitatively similar changes in photosynthetic parameters were observed in both interactions. Major differences between the responses to both strains were evident in the onset and time course of changes. A decrease in photosynthesis was detectable already at 3 h only after challenge with the avirulent strain while after 48 h the rate of photosynthesis was lower with the virulent strain. In contrast to photosynthesis, the regulation of marker genes for source/sink relations and the activities of invertase isoenzymes showed qualitative differences between both interactions. Inoculation of the virulent but not the avirulent strain resulted in downregulation of photosynthetic genes and upregulation of vacuolar invertases. The activity of vacuolar invertases transiently increased upon infection with the virulent strain but decreased with the avirulent strain while extracellular invertase activity was downregulated in both interactions.


Subject(s)
Arabidopsis/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Pseudomonas syringae/pathogenicity , Arabidopsis/genetics , Arabidopsis/microbiology , Blotting, Northern , Chlorophyll/chemistry , Chlorophyll/metabolism , Fluorescence , Gene Expression Regulation, Plant , Kinetics , Photosynthesis/genetics , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Pseudomonas syringae/classification , Virulence , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...