Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 244: 431-439, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31153031

ABSTRACT

Waste prevention and management become a significant issue worldwide to achieve sustainable development. Similar to many developing countries, Malaysia has faced severe problems in waste management due to its rapid economic growth and urbanisation. The municipal solid waste (MSW) production rate in Malaysia had increased significantly in a recent year, ranging from 0.8 to 1.25 kg/person∙d. The wastes generated contain a high amount of organic portion with high moisture content. Improper MSW management practice or delayed in waste collection and transportation can lead to severe health issues. This paper presents a case study in Johor Bahru, Malaysia (FOLO Farm), in which a composting prototype is used as the waste management technology to recycle the food and vegetable wastes. The greenhouse gases (GHG) mitigation and economic feasibility of the integrated composting and organic farming in this study are reported. This study showed a reduction of 27% of GHG by diverting the food and vegetable wastes from open dumping to the composting plant. Higher reduction rate (∼44%) can be achieved with better planning of waste collection route and applying the mitigation strategies during the composting process. By adapting the membership concept, this project not only ensures the economic feasibility of running a composting plant but also secures a channel for the growth of vegetable distribution. This study provides an insight into the feasibility and desirability to implement a pilot-scale composting for organic waste management to achieve the low carbon and self-sustain community.


Subject(s)
Composting , Refuse Disposal , Waste Management , Feasibility Studies , Malaysia , Organic Agriculture
2.
J Environ Manage ; 203(Pt 2): 679-687, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-27267145

ABSTRACT

Rapid population growth and urbanisation have generated large amount of municipal solid waste (MSW) in many cities. Up to 40-60% of Malaysia's MSW is reported to be food waste where such waste is highly putrescible and can cause bad odour and public health issue if its disposal is delayed. In this study, the implementation of community composting in a village within Iskandar Malaysia is presented as a case study to showcase effective MSW management and mitigation of GHG emission. The selected village, Felda Taib Andak (FTA), is located within a palm oil plantation and a crude palm oil processing mill. This project showcases a community-composting prototype to compost food and oil palm wastes into high quality compost. The objective of this article is to highlight the economic and environment impacts of a community-based composting project to the key stakeholders in the community, including residents, oil palm plantation owners and palm oil mill operators by comparing three different scenarios, through a life cycle approach, in terms of the greenhouse gas emission and cost benefit analysis. First scenario is the baseline case, where all the domestic waste is sent to landfill site. In the second scenario, a small-scale centralised composting project was implemented. In the third scenario, the data obtained from Scenario 2 was used to do a projection on the GHG emission and costing analysis for a pilot-scale centralised composting plant. The study showed a reduction potential of 71.64% on GHG emission through the diversion of food waste from landfill, compost utilisation and significant revenue from the compost sale in Scenario 3. This thus provided better insight into the feasibility and desirability in implementing a pilot-scale centralised composting plant for a sub-urban community in Malaysia to achieve a low carbon and self-sustainable society, in terms of environment and economic aspects.


Subject(s)
Carbon , Refuse Disposal , Cities , Greenhouse Effect , Malaysia
3.
Environ Sci Pollut Res Int ; 22(24): 19814-22, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26286798

ABSTRACT

This study was carried out to investigate the physicochemical properties of compost from oil palm empty fruit bunches (EFB) inoculated with effective microorganisms (EM∙1™). The duration of microbial-assisted composting was shorter (∼7 days) than control samples (2 months) in a laboratory scale (2 kg) experiment. The temperature profile of EFB compost fluctuated between 26 and 52 °C without the presence of consistent thermophilic phase. The pH of compost changed from weak acidic (pH ∼5) to mild alkaline (pH ∼8) because of the formation of nitrogenous ions such as ammonium (NH4 (+)), nitrite (NO2 (-)), and nitrate (NO3 (-)) from organic substances during mineralization. The pH of the microbial-treated compost was less than 8.5 which is important to prevent the loss of nitrogen as ammonia gas in a strong alkaline condition. Similarly, carbon mineralization could be determined by measuring CO2 emission. The microbial-treated compost could maintain longer period (∼13 days) of high CO2 emission resulted from high microbial activity and reached the threshold value (120 mg CO2-C kg(-1) day(-1)) for compost maturity earlier (7 days). Microbial-treated compost slightly improved the content of minerals such as Mg, K, Ca, and B, as well as key metabolite, 5-aminolevulinic acid for plant growth at the maturity stage of compost. Graphical Abstract Microbial-assisted composting on empty fruit bunches.


Subject(s)
Cocos/microbiology , Plant Components, Aerial/microbiology , Refuse Disposal/methods , Soil/chemistry , Waste Management/methods , Waste Products/analysis , Carbon/analysis , Chemical Phenomena , Cocos/chemistry , Malaysia , Nitrogen/analysis , Palm Oil , Plant Components, Aerial/chemistry , Plant Oils/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...