Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 16(5): 4978-83, 2016 May.
Article in English | MEDLINE | ID: mdl-27483855

ABSTRACT

For thin film silicon-based solar cells, effective light trapping at a broad range of wavelengths (400-1100 nm) is necessary. Normally, etching is only carried out with TCOs, such as SnO2:F and impurity doped ZnO, to form nano-sized craters in the surface morphology to confer a light trapping effect. However, in this study, prior to ZnO:Al etching, periodic structures on the glass substrates were made by photolithography and wet etching to increase the light scattering and internal reflection. The use of periodic structures on the glass substrate resulted in higher haze ratios in the range from 550 nm to 1100 nm, which is the optical absorption wavelength region for thin film silicon solar cells, than obtained by simple ZnO:Al etching. The periodically textured glass with micro-sized structures compensates for the low haze ratio at the middle and long wavelengths of wet etched ZnO:Al. ZnO:Al was deposited on the periodically textured glass, after which the ZnO:Al surface was also etched randomly using a mixed acid solution to form nano-sized craters. The thin film silicon solar cells with 350-nm-thick amorphous silicon absorber layer deposited on the periodic structured glass and etched ZnO:Al generated up to 10.68% more photocurrent, with 11.2% increase of the conversion efficiency compared to the cell deposited on flat glass and etched ZnO:Al.

2.
J Nanosci Nanotechnol ; 15(3): 2241-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26413646

ABSTRACT

We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.

3.
J Nanosci Nanotechnol ; 15(10): 7699-705, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726397

ABSTRACT

High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.

4.
J Nanosci Nanotechnol ; 14(12): 9388-94, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25971071

ABSTRACT

Highly conducting boron-doped microcrystalline silicon (p-type µc-Si:H) thin films have been prepared by radio frequency plasma-enhanced chemical-vapor deposition (RF-PECVD). In this work, the effects of hydrogen dilution, doping ratio, plasma power, deposition pressure and substrate temperature on the growth and the properties of boron-doped microcrystalline silicon (p-type µc-Si:H) thin films are investigated. The electrical, chemical and structural properties are improved with increasing crystallite, which depends on the plasma conditions. For various plasma parameters, the crystalline volume fraction (X(c)), dark conductivity (σ(d)), activation energy (E(a)), hydrogen content (C(H)), surface roughness (S(r)), and micro void fraction (R*) were measured, and they were 0-72%, 4.17-10(-4) S/cm-1.1 S/cm, 0.041-0.113 eV, 3.8-11.5 at.%, 3.2 nm-12.2 nm, and 0.47-0.80, respectively. The film with R* of 0.47 and C(H) of about 5 at.% belonged to a region of low disorder, and acted as a good passivation layer.

5.
J Nanosci Nanotechnol ; 14(8): 6261-5, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25936100

ABSTRACT

We showed well-aligned zinc oxide (ZnO) nanorod arrays synthesized using hydrothermal method at atmospheric pressure. The influence of fabrication conditions such as Zn2+/hexamethylentriamin concentration ratio, and growth temperature on the formation of ZnO nanorods was investigated. Scanning Electron Microscope (SEM) images and X-ray Diffraction (XRD) analysis were used to confirm the single crystal of ZnO nanorods, which showed wurtzite structure with growth direction of [0001] (the c-axis). Photoluminescence (PL) measurements of ZnO nanorods revealed an intense ultraviolet peak at 388.5 nm (3.19 eV) at room temperature. The results showed that the ZnO seed layers had strong influence on the growth of vertically aligned ZnO nanorods. The gas sensor based on ZnO nanorod arrays had the most selectivity with n-butanol gas (within 2 surveyed gas: ethanol and n-butanol) and showed a higher sensitivity of 222, fast response time of 15 seconds, recovery time of 110 seconds and lower operating temperature of 200-250 °C than the sensor based on the ZnO film in the same detecting conditions.


Subject(s)
Nanotubes , Zinc Oxide/chemistry , Crystallography, X-Ray , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...