Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
5.
J Med Chem ; 66(4): 2330-2346, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36787643

ABSTRACT

The excitatory amino acid transporter 2 (EAAT2) plays a key role in the clearance and recycling of glutamate - the major excitatory neurotransmitter in the mammalian brain. EAAT2 loss/dysfunction triggers a cascade of neurodegenerative events, comprising glutamatergic excitotoxicity and neuronal death. Nevertheless, our current knowledge regarding EAAT2 in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), is restricted to post-mortem analysis of brain tissue and experimental models. Thus, detecting EAAT2 in the living human brain might be crucial to improve diagnosis/therapy for ALS and AD. This perspective article describes the role of EAAT2 in physio/pathological processes and provides a structure-activity relationship of EAAT2-binders, bringing two perspectives: therapy (activators) and diagnosis (molecular imaging tools).


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Humans , Excitatory Amino Acid Transporter 2/metabolism , Neurodegenerative Diseases/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Chemistry, Pharmaceutical , Brain/metabolism , Glutamic Acid/metabolism , Mammals/metabolism
6.
Chem Rev ; 123(1): 105-229, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36399832

ABSTRACT

The presence of positron emission tomography (PET) centers at most major hospitals worldwide, along with the improvement of PET scanner sensitivity and the introduction of total body PET systems, has increased the interest in the PET tracer development using the short-lived radionuclides carbon-11. In the last few decades, methodological improvements and fully automated modules have allowed the development of carbon-11 tracers for clinical use. Radiolabeling natural compounds with carbon-11 by substituting one of the backbone carbons with the radionuclide has provided important information on the biochemistry of the authentic compounds and increased the understanding of their in vivo behavior in healthy and diseased states. The number of endogenous and natural compounds essential for human life is staggering, ranging from simple alcohols to vitamins and peptides. This review collates all the carbon-11 radiolabeled endogenous and natural exogenous compounds synthesised to date, including essential information on their radiochemistry methodologies and preclinical and clinical studies in healthy subjects.


Subject(s)
Positron-Emission Tomography , Radiopharmaceuticals , Humans , Carbon Radioisotopes/chemistry , Radiochemistry
10.
EJNMMI Radiopharm Chem ; 6(1): 34, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34628570

ABSTRACT

This guideline on molar activity (Am) and specific activity (As) focusses on small molecules, peptides and macromolecules radiolabelled for diagnostic and therapeutic applications. In this guideline we describe the definition of Am and As, and how these measurements must be standardised and harmonised. Selected examples highlighting the importance of Am and As in imaging studies of saturable binding sites will be given, and the necessity of using appropriate materials and equipment will be discussed. Furthermore, common Am pitfalls and remedies are described. Finally, some aspects of Am in relation the emergence of a new generation of highly sensitive PET scanners will be discussed.

11.
Org Biomol Chem ; 19(32): 6916-6925, 2021 08 28.
Article in English | MEDLINE | ID: mdl-34319335

ABSTRACT

Positron emission tomography (PET) is a powerful functional imaging technique that requires the use of positron emitting nuclides. Carbon-11 (11C) radionuclide has several advantages related to the ubiquity of carbon atoms in biomolecules and the conservation of pharmacological properties of the molecule upon isotopic exchange of carbon-12 with carbon-11. However, due to the short half-life of 11C (20.4 minutes) and the low scale with which it is produced by the cyclotron (sub-nanomolar concentrations), quick, robust and chemospecific radiolabelling strategies are required to minimise activity loss during incorporation of the 11C nuclide into the final product. To address some of the constraints of working with 11C, the use of silicon-based chemistry for 11C-labelling was proposed as a rapid and effective route for radiopharmaceutical production due to the broad applicability and high efficiency showed in organic chemistry. In the past years several organic chemistry methodologies have been successfully applied to 11C-chemistry. In this short review, we examine silicon-based 11C-chemistry, with a particular emphasis on the radiotracers that have been successfully produced and potential improvements to further expand the applicability of silicon in radiochemistry.

12.
J Labelled Comp Radiopharm ; 64(6): 237-242, 2021 05 30.
Article in English | MEDLINE | ID: mdl-33665888

ABSTRACT

A copper-catalysed radiosynthesis of carbon-11 radiolabelled carboxylic acids was developed by reacting terminal alkynes and cyclotron-produced carbon-11 carbon dioxide ([11 C]CO2 ) in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). A small library of 11 C-labelled propiolic acid derivatives were obtained with a total synthesis time of 15 min from end of bombardment (EOB) with a (non-isolated) radiochemical yield ranging from 7% to 28%.


Subject(s)
Carbon Dioxide
13.
Trends Neurosci ; 43(12): 935-938, 2020 12.
Article in English | MEDLINE | ID: mdl-33131922

ABSTRACT

A substantial fraction of coronavirus disease 2019 (COVID-19) patients experience neurological manifestations. Nevertheless, brain changes caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain largely unknown. Here, we provide a brief overview of positron emission tomography (PET) applications that could advance current understanding of CNS pathophysiological alterations associated with SARS-CoV-2 infection.


Subject(s)
Brain/diagnostic imaging , COVID-19/diagnostic imaging , Neuroimaging/methods , Positron-Emission Tomography/methods , Brain/metabolism , Brain/pathology , COVID-19/complications , COVID-19/physiopathology , Humans
14.
EJNMMI Radiopharm Chem ; 5(1): 20, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32870409

ABSTRACT

BACKGROUND: Formamides are common motifs of biologically-active compounds (e.g. formylated peptides) and are frequently employed as intermediates to yield a number of other functional groups. A rapid, simple and reliable route to [carbonyl-11C]formamides would enable access to this important class of compounds as in vivo PET imaging agents. RESULTS: A novel radiolabelling strategy for the synthesis of carbon-11 radiolabelled formamides ([11C]formamides) is presented. The reaction proceeded with the conversion of a primary amine to the corresponding [11C]isocyanate using cyclotron-produced [11C]CO2, a phosphazene base (2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine, BEMP) and phosphoryl chloride (POCl3). The [11C]isocyanate was subsequently reduced to [11C]formamide using sodium borohydride (NaBH4). [11C]Benzyl formamide was obtained with a radiochemical yield (RCY) of 80% in 15 min from end of cyclotron target bombardment and with an activity yield of 12%. This novel method was applied to the radiolabeling of aromatic and aliphatic formamides and the chemotactic amino acid [11C]formyl methionine (RCY = 48%). CONCLUSIONS: This study demonstrates the feasibility of 11C-formylation of primary amines with the primary synthon [11C]CO2. The reactivity is proportional to the nucleophilicity of the precursor amine. This novel method can be used for the production of biomolecules containing a radiolabelled formyl group.

15.
Nucl Med Biol ; 88-89: 24-33, 2020.
Article in English | MEDLINE | ID: mdl-32683248

ABSTRACT

INTRODUCTION: A sufficient dietary intake of the vitamin niacin is essential for normal cellular function. Niacin is transported into the cells by the monocarboxylate transporters: sodium-dependent monocarboxylate transporter (SMCT1 and SMCT2) and monocarboxylate transporter (MCT1). Despite the importance of niacin in biological systems, surprisingly, its in vivo biodistribution and trafficking in living organisms has not been reported. The availability of niacin radiolabelled with the short-lived positron emitting radionuclide carbon-11 ([11C]niacin) would enable the quantitative in vivo study of this endogenous micronutrient trafficking using in vivo PET molecular imaging. METHODS: [11C]Niacin was synthesised via a simple one-step, one-pot reaction in a fully automated system using cyclotron-produced carbon dioxide ([11C]CO2) and 3-pyridineboronic acid ester via a copper-mediated reaction. [11C]Niacin was administered intravenously in healthy anaesthetised mice placed in a high-resolution nanoScan PET/CT scanner. To further characterize in vivo [11C]niacin distribution in vivo, mice were challenged with either niacin or AZD3965, a potent and selective MCT1 inhibitor. To examine niacin gastrointestinal absorption and body distribution in vivo, no-carrier-added (NCA) and carrier-added (CA) [11C]niacin formulations were administered orally. RESULTS: Total synthesis time including HPLC purification was 25 ± 1 min from end of [11C]CO2 delivery. [11C]Niacin was obtained with a decay corrected radiochemical yield of 17 ± 2%. We report a rapid radioactivity accumulation in the kidney, heart, eyes and liver of intravenously administered [11C]niacin which is consistent with the known in vivo SMCTs and MCT1 transporter tissue expression. Pre-administration of non-radioactive niacin decreased kidney-, heart-, ocular- and liver-uptake and increased urinary excretion of [11C]niacin. Pre-administration of AZD3965 selectively decreased [11C]niacin uptake in MCT1-expressing organs such as heart and retina. Following oral administration of NCA [11C]niacin, a high level of radioactivity accumulated in the intestines. CA abolished the intestinal accumulation of [11C]niacin resulting in a preferential distribution to all tissues expressing niacin transporters and the excretory organs. CONCLUSIONS: Here, we describe the efficient preparation of [11C]niacin as PET imaging agent for probing the trafficking of nutrient demand in healthy rodents by intravenous and oral administration, providing a translatable technique to enable the future exploration of niacin trafficking in humans and to assess its application as a research tool for metabolic disorders (dyslipidaemia) and cancer.


Subject(s)
Carbon Radioisotopes/pharmacokinetics , Monocarboxylic Acid Transporters/metabolism , Niacin/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Animals , Biological Transport , Carbon Radioisotopes/analysis , Female , Male , Mice , Mice, Inbred BALB C , Organ Specificity , Radiopharmaceuticals/analysis , Tissue Distribution
16.
J Med Chem ; 63(15): 8265-8275, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32658479

ABSTRACT

The water-soluble vitamin biotin is essential for cellular growth, development, and well-being, but its absorption, distribution, metabolism, and excretion are poorly understood. This paper describes the radiolabeling of biotin with the positron emission tomography (PET) radionuclide carbon-11 ([11C]biotin) to enable the quantitative study of biotin trafficking in vivo. We show that intravenously administered [11C]biotin is quickly distributed to the liver, kidneys, retina, heart, and brain in rodents-consistent with the known expression of the biotin transporter-and there is a surprising accumulation in the brown adipose tissue (BAT). Orally administered [11C]biotin was rapidly absorbed in the small intestine and swiftly distributed to the same organs. Preadministration of nonradioactive biotin inhibited organ uptake and increased excretion. [11C]Biotin PET imaging therefore provides a dynamic in vivo map of transporter-mediated biotin trafficking in healthy rodents. This technique will enable the exploration of biotin trafficking in humans and its use as a research tool for diagnostic imaging of obesity/diabetes, bacterial infection, and cancer.


Subject(s)
Biotin/pharmacokinetics , Positron-Emission Tomography , Vitamin B Complex/pharmacokinetics , Animals , Biotin/administration & dosage , Carbon Radioisotopes/administration & dosage , Carbon Radioisotopes/pharmacokinetics , Female , Male , Mice, Inbred BALB C , Tissue Distribution , Vitamin B Complex/administration & dosage
17.
Chem Commun (Camb) ; 56(34): 4668-4671, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32211652

ABSTRACT

A novel carboxylation radiosynthesis methodology is described starting from cyclotron-produced [11C]CO2 and fluoride-activated silane derivatives. Six carbon-11 labelled carboxylic acids were obtained from their corresponding trimethylsilyl and trialkoxysilyl precursors in a one-pot labelling methodology. The radiochemical yields ranged from 19% to 93% within 12 minutes post [11C]CO2 delivery with a trapping efficiency of 21-89%.

18.
Future Med Chem ; 12(6): 511-521, 2020 03.
Article in English | MEDLINE | ID: mdl-32100545

ABSTRACT

Aim: The receptor for advanced glycation end products (RAGE) is a viable target for early Alzheimer's disease (AD) diagnosis using positron emission tomography (PET) as RAGE overexpression precedes Aß plaque formation. The development of a carbon-11 analog of FPS-ZM1 (N-benzyl-4-chloro-N-cyclohexylbenzamide, [11C]FPS-ZM1), possessing nanomolar affinity for RAGE, may enable the imaging of RAGE for early AD detection. Methodology & results: Herein we report an optimized [11C]CO2-to-[11C]CO chemical conversion for the synthesis of [11C]FPS-ZM1 and in vitro brain autoradiography. The [11C]CO2-to-[11C]CO conversion via 11C-silanecarboxylate derivatives was achieved with a 57% yield within 30 s from end of [11C]CO2 delivery. [11C]FPS-ZM1 was obtained with a decay-corrected isolated radiochemical yield of 9.5%. Conclusion: [11C]FPS-ZM1 distribution in brain tissues of wild-type versus transgenic AD model mice showed no statistically significant difference and high nondisplaceable binding.


Subject(s)
Benzamides/chemistry , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Positron-Emission Tomography , Receptor for Advanced Glycation End Products/analysis , Animals , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Carbon Radioisotopes , Mice , Mice, Transgenic , Molecular Structure , Receptor for Advanced Glycation End Products/metabolism
19.
BMC Cancer ; 19(1): 1197, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31810452

ABSTRACT

BACKGROUND: Glioblastoma multiform (GBM), a malignant brain tumour, has a very often poor prognosis. The therapeutic approach is represented by surgery followed by radiotherapy and chemotherapy. Hypoxia is a factor that causes a reduction of both radiotherapy and chemotherapy effectiveness in GBM and other cancers. Through the use of [64Cu][Cu(ATSM)], a hypoxia-targeting positron emission tomography (PET) radiotracer, is possible to identify the presence of hypoxic areas within a lesion and therefore modulate the therapeutic approach according to the findings. CASE PRESENTATION: In this case report, we observed an increase of radiotracer uptake from early acquisition to late acquisition in hypoxia sites and high correlation between [64Cu][Cu(ATSM) PET/CT results and expression of the hypoxia marker HIF-1α. CONCLUSIONS: [64Cu][Cu(ATSM) PET/CT represents a valid opportunity to reveal in vivo hypoxic areas in GBM lesion which can guide clinicians on selecting GMB patient's therapeutic scheme.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Organometallic Compounds/pharmacokinetics , Thiosemicarbazones/pharmacokinetics , Aged , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Cell Hypoxia , Coordination Complexes , Dose-Response Relationship, Radiation , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/radiotherapy , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Positron Emission Tomography Computed Tomography , Radioactive Tracers , Radiotherapy, Intensity-Modulated , Treatment Outcome
20.
Nucl Med Biol ; 68-69: 14-21, 2019.
Article in English | MEDLINE | ID: mdl-30578137

ABSTRACT

INTRODUCTION: Primary aldosteronism accounts for 6-15% of hypertension cases, the single biggest contributor to global morbidity and mortality. Whilst ~50% of these patients have unilateral aldosterone-producing adenomas, only a minority of these have curative surgery as the current diagnosis of unilateral disease is poor. Carbon-11 radiolabelled metomidate ([11C]MTO) is a positron emission tomography (PET) radiotracer able to selectively identify CYP11B1/2 expressing adrenocortical lesions of the adrenal gland. However, the use of [11C]MTO is limited to PET centres equipped with on-site cyclotrons due to its short half-life of 20.4 min. Radiolabelling a fluorometomidate derivative with fluorine-18 (radioactive half life 109.8 min) in the para-aromatic position ([18F]FAMTO) has the potential to overcome this disadvantage and allow it to be transported to non-cyclotron-based imaging centres. METHODS: Two strategies for the one-step radio-synthesis of [18F]FAMTO were developed. [18F]FAMTO was obtained via radiofluorination via use of sulfonium salt (1) and boronic ester (2) precursors. [18F]FAMTO was evaluated in vitro by autoradiography of pig adrenal tissues and in vivo by determining its biodistribution in rodents. Rat plasma and urine were analysed to determine [18F]FAMTO metabolites. RESULTS: [18F]FAMTO is obtained from sulfonium salt (1) and boronic ester (2) precursors in 7% and 32% non-isolated radiochemical yield (RCY), respectively. Formulated [18F]FAMTO was obtained with >99% radiochemical and enantiomeric purity with a synthesis time of 140 min from the trapping of [18F]fluoride ion on an anion-exchange resin (QMA cartridge). In vitro autoradiography of [18F]FAMTO demonstrated exquisite specific binding in CYP11B-rich pig adrenal glands. In vivo [18F]FAMTO rapidly accumulates in adrenal glands. Liver uptake was about 34% of that in the adrenals and all other organs were <12% of the adrenal uptake at 60 min post-injection. Metabolite analysis showed 13% unchanged [18F]FAMTO in blood at 10 min post-administration and rapid urinary excretion. In vitro assays in human blood showed a free fraction of 37.5%. CONCLUSIONS: [18F]FAMTO, a new 18F-labelled analogue of metomidate, was successfully synthesised. In vitro and in vivo characterization demonstrated high selectivity towards aldosterone-producing enzymes (CYP11B1 and CYP11B2), supporting the potential of this radiotracer for human investigation.


Subject(s)
Adrenal Glands/diagnostic imaging , Cytochrome P-450 CYP11B2/metabolism , Etomidate/analogs & derivatives , Fluorine Radioisotopes , Positron Emission Tomography Computed Tomography/methods , Steroid 11-beta-Hydroxylase/metabolism , Adrenal Glands/metabolism , Animals , Drug Stability , Etomidate/chemistry , Etomidate/metabolism , Etomidate/pharmacokinetics , Humans , Isotope Labeling , Male , Radioactive Tracers , Radiochemistry , Rats , Rats, Sprague-Dawley , Swine , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...