Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Viruses ; 16(5)2024 05 04.
Article in English | MEDLINE | ID: mdl-38793611

ABSTRACT

Coronaviruses (CoVs), a subfamily of Orthocoronavirinae, are viruses that sometimes present a zoonotic character. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for the recent outbreak of COVID-19, which, since its outbreak in 2019, has caused about 774,593,066 confirmed cases and 7,028,881 deaths. Aereosols are the main route of transmission among people; however, viral droplets can contaminate surfaces and fomites as well as particulate matter (PM) in suspensions of natural and human origin. Honey bees are well known bioindicators of the presence of pollutants and PMs in the environment as they can collect a great variety of substances during their foraging activities. The aim of this study was to evaluate the possible role of honey bees as bioindicators of the prevalence SARS-CoV-2. In this regard, 91 samples of honey bees and 6 of honey were collected from different apiaries of Campania region (Southern Italy) in four time periods from September 2020 to June 2022 and were analyzed with Droplet Digital RT-PCR for SARS-CoV-2 target genes Orf1b and N. The screening revealed the presence of SARS-CoV-2 in 12/91 in honey bee samples and in 2/6 honey samples. These results suggest that honey bees could also be used as indicators of outbreaks of airborne pathogens such as SARS-CoV-2.


Subject(s)
COVID-19 , Honey , SARS-CoV-2 , Animals , Bees/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Honey/analysis , COVID-19/virology , COVID-19/epidemiology , COVID-19/transmission , COVID-19/diagnosis , Italy/epidemiology , RNA, Viral/genetics , RNA, Viral/analysis , Humans , Reverse Transcriptase Polymerase Chain Reaction/methods
2.
Front Cell Infect Microbiol ; 12: 926127, 2022.
Article in English | MEDLINE | ID: mdl-36159652

ABSTRACT

Free-living amoebae (FLA) are widely distributed protozoa in nature, known to cause severe eye infections and central nervous system disorders. There is growing attention to the potential role that these protozoa could act as reservoirs of pathogenic bacteria and, consequently, to the possibility that, the persistence and spread of the latter may be facilitated, by exploiting internalization into amoebae. Shiga toxin-producing strains of Escherichia coli (STEC) are zoonotic agents capable of causing serious diseases, such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Cattle represent the main natural reservoir of STEC, which are frequently found also in other domestic and wild ruminants, often without causing any evident symptoms of disease. The aspects related to the ecology of STEC strains in animal reservoirs and the environment are poorly known, including the persistence of these microorganisms within niches unfavorable to survival, such as soils or waters. In this study we investigated the interaction between STEC strains of serotype O157: H7 with different virulence gene profiles, and a genus of a wild free-living amoeba, Acanthamoeba sp. Our results confirm the ability of STEC strains to survive up to 20 days within a wild Acanthamoeba sp., in a quiescent state persisting in a non-cultivable form, until they reactivate following some stimulus of an unknown nature. Furthermore, our findings show that during their internalization, the E. coli O157 kept the set of the main virulence genes intact, preserving their pathogenetic potential. These observations suggest that the internalization in free-living amoebae may represent a means for STEC to resist in environments with non-permissive growth conditions. Moreover, by staying within the protozoa, STEC could escape their detection in the vehicles of infections and resist to the treatments used for the disinfection of the livestock environment.


Subject(s)
Acanthamoeba , Amoeba , Escherichia coli Infections , Escherichia coli O157 , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Escherichia coli Infections/microbiology , Escherichia coli O157/genetics , Ruminants , Shiga Toxin , Soil , Virulence Factors/genetics
3.
Microorganisms ; 9(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34683475

ABSTRACT

Ecological interactions between wild aquatic birds and outdoor-housed poultry can enhance spillover events of avian influenza viruses (AIVs) from wild reservoirs to domestic birds, thus increasing the related zoonotic risk to occupationally exposed workers. To assess serological evidence of AIV infection in workers operating in Northern Italy at the wildfowl/poultry interface or directly exposed to wildfowl, serum samples were collected between April 2005 and November 2006 from 57 bird-exposed workers (BEWs) and from 7 unexposed controls (Cs), planning three sample collections from each individual. Concurrently, AIV surveillance of 3587 reared birds identified 4 AIVs belonging to H10N7, H4N6 and H2N2 subtypes while serological analysis by hemagglutination inhibition (HI) assay showed recent infections caused by H1, H2, H4, H6, H10, H11, H12, and H13 subtypes. Human sera were analyzed for specific antibodies against AIVs belonging to antigenic subtypes from H1 to H14 by using HI and virus microneutralization (MN) assays as a screening and a confirmatory test, respectively. Overall, antibodies specific to AIV-H3, AIV-H6, AIV-H8, and AIV-H9 were found in three poultry workers (PWs) and seropositivity to AIV-11, AIV-H13-still detectable in October 2017-in one wildlife professional (WP). Furthermore, seropositivity to AIV-H2, accounting for previous exposure to the "extinct" H2N2 human influenza viruses, was found in both BEWs and Cs groups. These data further emphasize the occupational risk posed by zoonotic AIV strains and show the possible occurrence of long-lived antibody-based immunity following AIV infections in humans.

4.
Viruses ; 13(8)2021 07 22.
Article in English | MEDLINE | ID: mdl-34452294

ABSTRACT

Campylobacteriosis is the most commonly reported gastrointestinal disease in humans. Campybacter jejuni is the main cause of the infection, and bacterial colonization in broiler chickens is widespread and difficult to prevent, leading to high risk of occurrence in broiler meat. Phage therapy represents an alternative strategy to control Campylobacter in poultry. The aim of this work was to assess the efficacy of two field-isolated bacteriophages against experimental infections with an anti-microbial resistant (AMR) Campylobacter jejuni strain. A two-step phage application was tested according to a specific combination between chickens' rearing time and specific multiplicities of infections (MOIs), in order to reduce the Campylobacter load in the animals at slaughtering and to limit the development of phage-resistant mutants. In particular, 75 broilers were divided into three groups (A, B and C), and phages were administered to animals of groups B and C at day 38 (Φ 16-izsam) and 39 (Φ 7-izsam) at MOI 0.1 (group B) and 1 (group C). All broilers were euthanized at day 40, and Campylobacter jejuni was enumerated in cecal contents. Reductions in Campylobacter counts were statistically significant in both group B (1 log10 colony forming units (cfu)/gram (gr)) and group C (2 log10 cfu/gr), compared to the control group. Our findings provide evidence about the ability of phage therapy to reduce the Campylobacter load in poultry before slaughtering, also associated with anti-microbial resistance pattern.


Subject(s)
Campylobacter Infections/veterinary , Campylobacter jejuni/growth & development , Chickens/microbiology , Phage Therapy , Poultry Diseases/therapy , Animals , Bacterial Load , Bacteriophages/physiology , Campylobacter Infections/microbiology , Campylobacter Infections/therapy , Cecum/microbiology , Poultry Diseases/microbiology
5.
Microorganisms ; 9(4)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807487

ABSTRACT

Listeria monocytogenes is a bacterial pathogen responsible of listeriosis, a disease that in humans is often related to the contamination of ready-to-eat foods. Phages are candidate biodecontaminants of pathogenic bacteria thanks to their ability to lyse prokaryotes while being safe for eukaryotic cells. In this study, ɸIZSAM-1 was isolated from the drain-waters of an Italian blue cheese plant and showed lytic activity against antimicrobial resistant Listeria monocytogenes strains. This phage was subjected to purification and in vitro efficacy tests. The results showed that at multiplicities of infection (MOIs) ≤ 1, phages were able to keep Listeria monocytogenes at low optical density values up to 8 h, with bacterial counts ranging from 1.02 to 3.96 log10 units lower than the control. Besides, ɸIZSAM-1 was further characterized, showing 25 principal proteins (sodium dodecyl sulfate polyacrylamide gel electrophoresis profile) and a genome of approximately 50 kilo base pairs. Moreover, this study describes a new approach to phage isolation for applications in Listeriamonocytogenes biocontrol in food production. In particular, the authors believe that the selection of phages from the same environments where pathogens live could represent a new approach to successfully integrating the control measures in an innovative, cost effective, safe and environmentally friendly way.

6.
Vet Ital ; 57(4): 311-318, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35593490

ABSTRACT

Some residents and people from the staff of a geriatric health care facility in Teramo province, developed acute gastroenteritis from March 8th to March 21st 2017. A prompt epidemiological investigation was conducted to identify the etiological agent, the trace back the potential ways of transmission and control the infection. Information on the outbreak was collected through an epidemiological questionnaire. Faecal samples from all human cases (n = 50) and swabs from environmental surfaces were collected and analysed by RT-PCR for the presence of Norovirus (NoV). Among faecal samples, 34 out of 50 were positive for NoV with no other pathogen detected. In particular, 2 (2/34) were positive to NoV genogroup I (GI), 31 (31/34) to NoV genogroup II (GII), and one sample (1/34) was positive to both NoV GI and GII. Moreover, faecal samples of people from the canteen (n = 8) were also tested resulting negative to NoV detection. Norovirus was also detected in 28 of the 122 swabs from environmental surfaces collected. Among the positive samples, 12 NoV strains were subtyped as NoV GII.4 Sydney_2012 variant. Person-to-person close contact and contaminated environmental surfaces were the probable transmission route among the people of the health care facility. The members of the staff were considered to play an important role in transmission of NoV. A proper disinfection procedure applied during the outbreak could have been critically important to limit the dissemination of the viral infection.


Subject(s)
Caliciviridae Infections , Norovirus , Animals , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Delivery of Health Care , Disease Outbreaks , Genotype , Humans , Phylogeny
7.
Article in English | MEDLINE | ID: mdl-32582565

ABSTRACT

Enteroinvasive Escherichia coli (EIEC) cause intestinal illness through the same pathogenic mechanism used by Shigella spp. The latter species can be typed through genomic and phenotypic methods used for E. coli and have been proposed for reclassification within E. coli species. Recently the first appearance of a highly pathogenic EIEC O96:H19 was described in Europe as the causative agent of two large outbreaks that occurred in Italy and in the United Kingdom. In contrast to Shigella spp and to the majority of EIEC strains, EIEC O96:H19 fermented lactose, lacked pathoadaptive mutations, and showed good fitness in extracellular environment, similarly to non-pathogenic E. coli, suggesting they have emerged following acquisition of the invasion plasmid by a non-pathogenic E. coli. Here we describe the whole genome comparison of two EIEC O96:H19 strains isolated from severe cases of diarrhea in Uruguay in 2014 with the sequences of EIEC O96:H19 available in the public domain. The phylogenetic comparison grouped all the O96:H19 strains in a single cluster, while reference EIEC strains branched into different clades with Shigella strains occupying apical positions. The comparison of the virulence plasmids showed the presence of a complete conjugation region in at least one O96:H19 EIEC. Reverse Transcriptase Real Time PCR experiments confirmed in this strain the expression of the pilin-encoding gene and conjugation experiments suggested its ability to mobilize an accessory plasmid in a recipient strain. Noteworthy, the tra region was comprised between two reversely oriented IS600 elements, which were also found as remnants in another EIEC O96:H19 plasmid lacking the tra locus. We hypothesize that an IS-mediated recombination mechanism may have caused the loss of the conjugation region commonly observed in EIEC and Shigella virulence plasmids. The results of this study support the hypothesis of EIEC originating from non-pathogenic E. coli through the acquisition of the virulence plasmid via conjugation. Remarkably, this study showed the ability of a circulating EIEC strain to mobilize plasmids through conjugation, suggesting a mechanism for the emergence of novel EIEC clones.


Subject(s)
Escherichia coli , Shigella , Clone Cells , Escherichia coli/genetics , Europe , Italy , Phylogeny , Shigella/genetics , United Kingdom
8.
J Wildl Dis ; 55(1): 158-163, 2019 01.
Article in English | MEDLINE | ID: mdl-30235085

ABSTRACT

Swine influenza viruses (SIVs) have been repeatedly demonstrated to circulate in wild boar ( Sus scrofa) populations, whereas no evidence of exposure to avian influenza viruses (AIVs) has been described in wild boar. To better understand how different environments may influence the ecology of influenza A viruses (IAVs) in wild suid populations, we examined biologic samples of wild boars from two study areas represented by an upland (UL) and a wetland (WL) in northern and central Italy, respectively. Serum samples were collected from 388 wild boars sampled in the UL, whereas both a serum sample and a nasal swab were obtained from each of 35 wild boars sampled in the WL. Twenty of 388 (5.2%) sera from the UL were positive by enzyme-linked immunosorbent assay for the presence of antibodies against influenza A nucleoprotein and some of these samples showed antibodies by hemagglutination inhibition to SIVs of H1N1 (1/20), H1N2 (10/20), and H3N2 (1/20) antigenic subtypes. No IAV-seropositive wild boar was detected in the WL, although one of 35 animals was found to be IAV-positive by both a reverse transcriptase PCR and a real-time reverse transcriptase PCR. We hypothesize an SIV exposure for IAV-seropositive wild boars occupying the UL, whereas a possible AIV spillover from aquatic bird species-natural reservoirs of IAVs-to wild boars in the WL cannot be ruled out. Further research is needed to better understand the role played by wild boars in IAV ecology in Mediterranean habitats.


Subject(s)
Influenza A virus/immunology , Orthomyxoviridae Infections/veterinary , Sus scrofa/blood , Animals , Influenza A virus/isolation & purification , Italy/epidemiology , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Seroepidemiologic Studies
9.
Virol J ; 15(1): 10, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29329554

ABSTRACT

CORRECTION: After Publication of the article [1], it has been brought to our attention that an author's name has been spelt incorrectly. The correct spelling should be "Massimo Ciccozzi", but it was previously included as "Massimo Cicozzi". The original version has now been revised to reflect this.

10.
Virol J ; 14(1): 239, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29258555

ABSTRACT

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV), which belongs to beta group of coronavirus, can infect multiple host species and causes severe diseases in humans. Multiple surveillance and phylogenetic studies suggest a bat origin. In this study, we describe the detection and full genome characterization of two CoVs closely related to MERS-CoV from two Italian bats, Pipistrellus kuhlii and Hypsugo savii. METHODS: Pool of viscera were tested by a pan-coronavirus RT-PCR. Virus isolation was attempted by inoculation in different cell lines. Full genome sequencing was performed using the Ion Torrent platform and phylogenetic trees were performed using IQtree software. Similarity plots of CoV clade c genomes were generated by using SSE v1.2. The three dimensional macromolecular structure (3DMMS) of the receptor binding domain (RBD) in the S protein was predicted by sequence-homology method using the protein data bank (PDB). RESULTS: Both samples resulted positive to the pan-coronavirus RT-PCR (IT-batCoVs) and their genome organization showed identical pattern of MERS CoV. Phylogenetic analysis showed a monophyletic group placed in the Beta2c clade formed by MERS-CoV sequences originating from humans and camels and bat-related sequences from Africa, Italy and China. The comparison of the secondary and 3DMMS of the RBD of IT-batCoVs with MERS, HKU4 and HKU5 bat sequences showed two aa deletions located in a region corresponding to the external subdomain of MERS-RBD in IT-batCoV and HKU5 RBDs. CONCLUSIONS: This study reported two beta CoVs closely related to MERS that were obtained from two bats belonging to two commonly recorded species in Italy (P. kuhlii and H. savii). The analysis of the RBD showed similar structure in IT-batCoVs and HKU5 respect to HKU4 sequences. Since the RBD domain of HKU4 but not HKU5 can bind to the human DPP4 receptor for MERS-CoV, it is possible to suggest also for IT-batCoVs the absence of DPP4-binding potential. More surveillance studies are needed to better investigate the potential intermediate hosts that may play a role in the interspecies transmission of known and currently unknown coronaviruses with particular attention to the S protein and the receptor specificity and binding affinity.


Subject(s)
Chiroptera/virology , Genome, Viral/genetics , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny , Amino Acid Sequence , Animals , Base Sequence , Italy , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Polymerase Chain Reaction , Protein Interaction Domains and Motifs , Protein Structure, Tertiary/genetics , RNA, Viral/genetics , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
11.
Biomed Res Int ; 2014: 598732, 2014.
Article in English | MEDLINE | ID: mdl-25025062

ABSTRACT

Following the emergence of the A(H1N1)pdm09 in humans, this novel influenza virus was reverse transmitted from infected people to swine population worldwide. In this study we investigated the molecular evolution of A(H1N1)pdm09 virus identified in pigs reared in a single herd. Nasal swabs taken from pigs showing respiratory distress were tested for influenza type A and A(H1N1)pdm09 by real-time RT-PCR assays. Virus isolation from positive samples was attempted by inoculation of nasal swabs samples into specific pathogen free embryonated chicken eggs (ECE) and complete genome sequencing was performed on virus strains after replication on ECE or from original swab sample. The molecular analysis of hemagglutinin (HA) showed, in four of the swine influenza viruses under study, a unique significant amino acid change, represented by a two-amino acid insertion at the HA receptor binding site. Phylogenetic analysis of HA, neuraminidase, and concatenated internal genes revealed a very similar topology, with viruses under study forming a separate cluster, branching outside the A(H1N1)pdm09 isolates recognized until 2014. The emergence of this new cluster of A(H1N1)pdm09 in swine raises further concerns about whether A(H1N1)pdm09 with new molecular characteristics will become established in pigs and potentially transmitted to humans.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/genetics , Neuraminidase/genetics , Amino Acid Substitution/genetics , Animals , Evolution, Molecular , Genome, Viral , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/virology , Pandemics , Phylogeny , Swine/virology
12.
PLoS One ; 8(2): e57576, 2013.
Article in English | MEDLINE | ID: mdl-23469029

ABSTRACT

BACKGROUND: Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs) emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs) in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm) virus. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples from 123 swine workers (SWs) and 379 control subjects (Cs), not exposed to pig herds, were tested by haemagglutination inhibition (HI) assay against selected SIVs belonging to H1N1 (swH1N1), H1N2 (swH1N2) and H3N2 (swH3N2) subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes). Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs) and after (n. 39 SWs; n. 145 Cs) the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively). Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively). No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4%) and swH3N2 (51.2 vs. 55.4%) viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs. CONCLUSION/SIGNIFICANCE: A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001) whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed at early detection and control of SIVs with pandemic potential in humans.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross Reactions/immunology , Immunity/immunology , Influenza A Virus, H1N1 Subtype/immunology , Occupational Exposure/statistics & numerical data , Pandemics/statistics & numerical data , Swine/virology , Adolescent , Adult , Aged , Animals , Antigens, Viral/immunology , Female , Humans , Influenza A Virus, H1N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Italy/epidemiology , Male , Middle Aged , Seasons , Young Adult
13.
Vet Microbiol ; 149(3-4): 472-7, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21208754

ABSTRACT

Swine influenza monitoring programs have been in place in Italy since the 1990 s and from 2009 testing for the pandemic H1N1/2009 virus (H1N1pdm) was also performed on all the swine samples positive for type A influenza. This paper reports the isolation and genomic characterization of a novel H1N2 swine influenza reassortant strain from pigs in Italy that was derived from the H1N1pdm virus. In May 2010, mild respiratory symptoms were observed in around 10% of the pigs raised on a fattening farm in Italy. Lung homogenate taken from one pig showing respiratory distress was tested for influenza type A and H1N1pdm by two real time RT-PCR assays. Virus isolation was achieved by inoculation of lung homogenate into specific pathogen free chicken embryonated eggs (SPF CEE) and applied onto Caco-2 cells and then the complete genome sequencing and phylogenetic analysis was performed from the CEE isolate. The lung homogenate proved to be positive for both influenza type A (gene M) and H1N1pdm real time RT-PCRs. Virus isolation (A/Sw/It/116114/2010) was obtained from both SPF CEE and Caco-2 cells. Phylogenetic analysis showed that all of the genes of A/Sw/It/116114/2010, with the exception of neuraminidase (NA), belonged to the H1N1pdm cluster. The NA was closely related to two H1N2 double reassortant swine influenza viruses (SIVs), previously isolated in Sweden and Italy. NA sequences for these three strains were clustering with H3N2 SIVs. The emergence of a novel reassortant H1N2 strain derived from H1N1pdm in swine in Italy raises further concerns about whether these viruses will become established in pigs. The new reassortant not only represents a pandemic (zoonotic) threat but also has unknown livestock implications for the European swine industry.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/isolation & purification , Orthomyxoviridae Infections/veterinary , Reassortant Viruses/isolation & purification , Swine Diseases/virology , Swine/virology , Animals , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N2 Subtype/classification , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Italy/epidemiology , Lung/virology , Neuraminidase/genetics , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/veterinary , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sequence Analysis, RNA , Swine Diseases/epidemiology
14.
AIDS Res Hum Retroviruses ; 26(6): 625-34, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20507206

ABSTRACT

It is necessary to understand the molecular nature of the virus population that persists in cellular reservoirs. To achieve this we planned to characterize the patterns of resistance of HIV-1 in CD14(+) monocytes, CD4(+) T cells, and plasma. Blood samples were collected from 42 patients treated for HIV: 32 were in virological failure and in 10 viremia was undetectable. CD14(+) and CD4(+) T cells were isolated using magnetic beads. Genotyping of the reverse transcriptase and protease gene of HIV-1 was undertaken using the fluorescent dideoxy-terminator method. Of the 32 patients in virological failure, 24 (75%) had resistance mutations in at least one compartment. The numbers and types of mutations from monocytes were the same as those detected in both CD4(+) T cell-associated virus and plasma in only 8% whereas in 71% monocytes exhibited a different mutation pattern. In 21% of patients, the profile of drug-resistant mutations in the virus from blood monocytes was identical to that in plasma but differed from that in CD4. In the 71% of patients with virological suppression, the genotypic resistance pattern differed between monocytes and CD4(+) T cells. Circulating monocytes may harbor a viral dominant population different from those viruses circulating in blood and archived in CD4(+) T cells. Hence, monocytes and other cellular reservoirs might serve as an indirect source of a drug-resistant viral variant.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Drug Resistance, Viral , HIV Infections/virology , HIV-1/drug effects , Monocytes/virology , Mutation, Missense , Plasma/virology , Genotype , HIV Protease/genetics , HIV Reverse Transcriptase/genetics , HIV-1/genetics , HIV-1/isolation & purification , Humans , Lipopolysaccharide Receptors/analysis , Monocytes/chemistry , Sequence Analysis, DNA
15.
New Microbiol ; 32(4): 411-3, 2009 Oct.
Article in English | MEDLINE | ID: mdl-20128449

ABSTRACT

It has been demonstrated that HIV infection may affect the levels of thymidine kinase (TK) and deoxycytidine kinase (dCK) in peripheral blood mononuclear cells from HIV infected adults. The aim of this study was to examine the effect of HIV infection and/or antiretroviral therapy on the activity of the above enzymes in HIV-infected children. The results showed that an inter-individual variability in TK and dCK activities does exist in both HIV infected and uninfected children. TK and dCK levels in PBMC from HIV infected and non infected children did not significantly differ. Furthermore, the therapeutic regimen, including zidovudine, does not seem to affect TK activity.


Subject(s)
Deoxycytidine Kinase/metabolism , HIV Infections/enzymology , Leukocytes, Mononuclear/enzymology , Thymidine Kinase/metabolism , Adolescent , Adult , Anti-HIV Agents/therapeutic use , Child , Child, Preschool , Female , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/physiology , Humans , Infant , Male , Zidovudine/therapeutic use
16.
J Med Virol ; 80(5): 766-71, 2008 May.
Article in English | MEDLINE | ID: mdl-18360888

ABSTRACT

The aim of the study was to evaluate the mRNA expression of four relevant ABC-transporter genes [MDR1 (P-glycoprotein; Pgp), MRP1, MRP4, and MRP5] in HIV-positive individuals failing treatment and analyze the association between the levels of their expression and viral load, CD4 cell count, and therapeutic history. Ninety-eight HIV-positive samples and 20 samples from healthy donors were analyzed, retrospectively. Peripheral blood mononuclear cells (PBMCs) from HIV1-positive individuals were collected at the time of virological failure. Expression of mRNA of Pgp, MRP1, MRP4, and MRP5 in PBMCs was evaluated by real-time PCR. A high inter-individual variability was observed in both HIV-positive individuals and healthy donors but the expression levels of all mRNA analyzed were significantly higher in the HIV-infected group (P < 0.05). A weak but significant inverse correlation was observed between CD4 cell counts and expression levels of MRP4 and MRP5. Comparison of mRNA expression between individuals with different therapeutic histories showed that expression of MRP4 and MRP5 genes in patients who were both protease inhibitor (PI) and non-nucleoside reverse transcriptase inhibitor (NNRTI)-experienced was significantly higher than in patients who were PI experienced but NNRTI-naïve. In conclusion, the mRNA expression of Pgp, MRP1, MRP4, and MRP5 varies among HIV-infected patients and healthy donors but is significantly higher in HIV-positive patients than in donors. The expression of MRP4 and MRP5 seems to correlate with CD4 cell counts. The same protein seems to be overexpressed in patients receiving NNRTIs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Gene Expression , HIV Infections/drug therapy , Leukocytes, Mononuclear/drug effects , Multidrug Resistance-Associated Proteins/biosynthesis , ATP Binding Cassette Transporter, Subfamily B , CD4 Lymphocyte Count , HIV Infections/immunology , HIV Infections/virology , Humans , RNA, Messenger/biosynthesis , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...