Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(4)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37111678

ABSTRACT

The combination of TiO2 nanoparticles (NPs) and photosensitizers (PS) may offer significant advantages in photodynamic therapy (PDT) of melanoma, such as improved cell penetration, enhanced ROS production, and cancer selectivity. In this study, we aimed to investigate the photodynamic effect of 5,10,15,20-(Tetra-N-methyl-4-pyridyl)porphyrin tetratosylate (TMPyP4) complexes with TiO2 NPs on human cutaneous melanoma cells by irradiation with 1 mW/cm2 blue light. The porphyrin conjugation with the NPs was analyzed by absorption and FTIR spectroscopy. The morphological characterization of the complexes was performed by Scanning Electron Microscopy and Dynamic Light Scattering. The singlet oxygen generation was analyzed by phosphorescence at 1270 nm. Our predictions indicated that the non-irradiated investigated porphyrin has a low degree of toxicity. The photodynamic activity of the TMPyP4/TiO2 complex was assessed on the human melanoma Mel-Juso cell line and non-tumor skin CCD-1070Sk cell line treated with various concentrations of the PS and subjected to dark conditions and visible light-irradiation. The tested complexes of TiO2 NPs with TMPyP4 presented cytotoxicity only after activation by blue light (405 nm) mediated by the intracellular production of ROS in a dose-dependent manner. The photodynamic effect observed in this evaluation was higher in melanoma cells than the effect observed in the non-tumor cell line, demonstrating a promising potential for cancer-selectivity in PDT of melanoma.

2.
Pharmaceutics ; 14(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36297555

ABSTRACT

Hydrogels are ideal candidates for the sustained local administration of antimicrobial drugs because they have customizable physicochemical properties that allow drug release kinetics to be controlled and potentially address the issue of systemic side effects. Consequently, the purpose of this study was to use 266 nm-pulsed laser beams to photo-crosslink gelatin methacryloyl hydrogels using Irgacure 2959 as a photo-initiator to reduce the curing time and to have an online method to monitor the process, such as laser-induced fluorescence. Additionally, irradiated chlorpromazine was loaded into the hydrogels to obtain a drug delivery system with antimicrobial activity. These hydrogels were investigated by UV-Vis and FTIR absorption spectroscopy, scanning electron microscopy, and laser-induced fluorescence spectroscopy and their structural and morphological characteristics, swelling behavior, and drug release profile were obtained. As a result the morphology, swelling behavior, and drug release profile were influenced by both the energy of the laser beam and the exposure time. The optimal hydrogel was obtained after 1 min of laser irradiation for Irgacure 2959 at 0.05% w/v concentration and gelatin methacryloyl at 10% w/v concentration. The hydrogels loaded with irradiated chlorpromazine show significant antimicrobial activity against Staphylococcus aureus and MRSA bacteria and a non-cytotoxic effect against L929 fibroblast cell lines.

3.
Molecules ; 27(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35268828

ABSTRACT

Pharmaceuticals carried into space are subjected to different gravitational conditions. Hypergravity is encountered in the first stage, during spacecraft launching. The stability of medicines represents a critical element of space missions, especially long-duration ones. Therefore, stability studies should be envisaged before the implementation of drugs for future deep space travel, where the available pharmaceuticals would be limited and restocking from Earth would be impossible. Multipurpose drugs should be proposed for this reason, such as phenothiazine derivatives that can be transformed by optical methods into antimicrobial agents. Within this preliminary study, promethazine and thioridazine aqueous solutions were exposed to UV laser radiation that modified their structures and generated a mixture of photoproducts efficient against particular bacteria. Subsequently, they were subjected to 20 g in the European Space Agency's Large Diameter Centrifuge. The aim was to evaluate the impact of hypergravity on the physico-chemical and spectral properties of unirradiated and laser-irradiated medicine solutions through pH assay, UV-Vis/FTIR absorption spectroscopy, and thin-layer chromatography. The results revealed no substantial alterations in centrifuged samples when compared to uncentrifuged ones. Due to their stability after high-g episodes, laser-exposed phenothiazines could be considered for future space missions.


Subject(s)
Thioridazine
4.
Molecules ; 28(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36615512

ABSTRACT

This study presents the spectral characterization of TiO2 nanoparticles (NPs) functionalized with three porphyrin derivatives: 5,10,15,20-(Tetra-4-aminophenyl) porphyrin (TAPP), 5,10,15,20-(Tetra-4-methoxyphenyl) porphyrin (TMPP), and 5,10,15,20-(Tetra-4-carboxyphenyl) porphyrin (TCPP). UV-Vis absorption and Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) spectroscopic studies of these porphyrins and their complexes with TiO2 NPs were performed. In addition, the efficiency of singlet oxygen generation, the key species in photodynamic therapy, was investigated. UV-Vis absorption spectra of the NPs complexes showed the characteristic bands of porphyrins. These allowed us to determine the loaded porphyrins on TiO2 NPs functionalized with porphyrins. FTIR-ATR revealed the formation of porphyrin-TiO2 complexes, suggesting that porphyrin adsorption on TiO2 may involve the pyrroles in the porphyrin ring, or the radicals of the porphyrin derivative. The quantum yield for singlet oxygen generation by the studied porphyrin complexes with TiO2 was higher compared to bare porphyrins for TAPP and TMPP, while for the TCPP-TiO2 NPs complex, a decrease was observed, but still maintained a good efficiency. The TiO2 NPs conjugates can be promising candidates to be tested in photodynamic therapy in vitro assays.


Subject(s)
Nanoparticles , Photochemotherapy , Porphyrins , Porphyrins/chemistry , Singlet Oxygen , Spectroscopy, Fourier Transform Infrared , Photosensitizing Agents/chemistry
5.
Pharmaceutics ; 13(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34959411

ABSTRACT

The purpose of this study was to investigate the effectiveness in photodynamic therapy of iron oxide nanoparticles (γ-Fe2O3 NPs), synthesized by laser pyrolysis technique, functionalized with 5,10,15,20-(Tetra-4-sulfonatophenyl) porphyrin tetraammonium (TPPS) on human cutaneous melanoma cells, after only 1 min blue light exposure. The efficiency of porphyrin loading on the iron oxide nanocarriers was estimated by using absorption and FTIR spectroscopy. The singlet oxygen yield was determined via transient characteristics of singlet oxygen phosphorescence at 1270 nm both for porphyrin functionalized nanoparticles and rose bengal used as standard. The irradiation was performed with a LED (405 nm, 1 mW/cm2) for 1 min after melanoma cells were treated with TPPS functionalized iron oxide nanoparticles (γ-Fe2O3 NPs_TPPS) and incubated for 24 h. Biological tests revealed a high anticancer effect of γ-Fe2O3 NPs_TPPS complexes indi-cated by the inhibition of tumor cell proliferation, reduction of cell adhesion, and induction of cell death through ROS generated by TPPS under light exposure. The biological assays were combined with the pharmacokinetic prediction of the porphyrin.

6.
J Chromatogr A ; 1655: 462488, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34474191

ABSTRACT

A densitometry method based on steady-state and time-resolved fluorescence assessments for thioridazine and its photoproducts applied on HPTLC plates has been developed. The excitation source was a picosecond diode laser emitting at 375 nm. This method was used for the analysis of the photoproducts resulted from thioridazine irradiation with 266 nm nanosecond-pulsed laser. The validation of the developed method was performed for thioridazine in terms of linearity, precision, limits of detection and quantification. Furthermore, analysis of the photoproducts of irradiated thioridazine was performed by steady-state and time-resolved fluorescence. The fluorescence spectra and fluorescence lifetime of each photoproduct were obtained and the horizontal chromatograms of fluorescence maxima were generated.


Subject(s)
Lasers , Thioridazine , Chromatography, Thin Layer , Densitometry
7.
Molecules ; 26(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923649

ABSTRACT

Ciprofloxacin is one of the most prescribed antibiotics in treating bacterial infections, becoming an important pollutant of the wastewaters. Moreover, ciprofloxacin is hard to be destroyed by conventional water treatment processes; therefore, efficient treatments to destroy it are needed in water decontamination. This study offers insights into the performance of 266 nm laser beams on the photodegradation of ciprofloxacin. An Nd:YAG laser was used that emitted 266 nm at an energy of 6.5 mJ (power of 65 mW) and ciprofloxacin water solutions were irradiated up to 240 min. The irradiated solutions were investigated by UV-Vis and FTIR absorption spectroscopy, pH assay, and laser-induced fluorescence. An HPTLC densitometer was used to characterize the laser-induced fluorescence and fluorescence lifetime of photodegradation products. The UV-Vis absorption, FTIR, and laser-induced fluorescence spectra showed the degradation of ciprofloxacin. Moreover, HPTLC densitometry offered the fluorescence and fluorescence lifetime of ciprofloxacin and its three photoproducts as well as their relative quantification. From the FTIR spectra, the molecular structure of two out of three photoproducts was proposed. In conclusion, the laser irradiation method provided the efficient photodegradation of ciprofloxacin, whereas the analytical techniques offered the proper means to monitor the process and detect the obtained photoproducts.


Subject(s)
Ciprofloxacin/chemistry , Ultraviolet Rays , Photolysis , Spectroscopy, Fourier Transform Infrared
8.
Molecules ; 24(24)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817499

ABSTRACT

Fluorescence and lasing emission that are produced separately in time during excitation laser pulse for an mm-sized Rhodamine 6G dye-water droplet are reported. The droplet acts as a quasi-spherical closed optical resonator and due to multiple internal reflections, the resonant amplified emission is delayed with respect to fluorescence emission. Measurements of the temporal evolution of the droplet's emission were performed by varying the signal acquisition gate width and gate delay with respect to the pumping pulse. The droplet emission spectra are structured in two bands which appear one after the other in time: first, the fluorescence emission band which follows pumping laser pulse time shape and then a second band, the lasing band, placed at shorter wavelengths and formed in time after the peak of the pumping laser pulse intensity, on the pulse tail. The lasing threshold pumping intensity is much lower than those for typical dye lasers.


Subject(s)
Fluorescence , Fluorescent Dyes/chemistry , Lasers , Rhodamines/chemistry
9.
Eur J Pharm Sci ; 81: 27-35, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26432595

ABSTRACT

Multiple drug resistance requires a flexible approach to find medicines able to overcome it. One method could be the exposure of existing medicines to ultraviolet laser beams to generate photoproducts that are efficient against bacteria and/or malignant tumors. This can be done in droplets or bulk volumes. In the present work are reported results about the interaction of 266nm and 355nm pulsed laser radiation with microdroplets and bulk containing solutions of 10mg/ml Chlorpromazine Hydrochloride (CPZ) in ultrapure water. The irradiation effects on CPZ solution at larger time intervals (more than 30min) are similar in terms of generated photoproducts if the two ultraviolet wavelengths are utilized. The understanding of the CPZ parent compound transformation may be better evidenced, as shown in this paper, if studies at shorter than 30minute exposure times are made coupled with properly chosen volumes to irradiate. We show that at exposure to a 355nm laser beam faster molecular modifications of CPZ in ultrapure water solution are produced than at irradiation with 266nm, for both microdroplet and bulk volume samples. These effects are evidenced by thin layer chromatography technique and laser induced fluorescence measurements.


Subject(s)
Antipsychotic Agents/chemistry , Chlorpromazine/chemistry , Antipsychotic Agents/radiation effects , Chlorpromazine/radiation effects , Chromatography, Thin Layer , Fluorescence , Lasers , Ultraviolet Rays
10.
Colloids Surf B Biointerfaces ; 137: 91-103, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26187648

ABSTRACT

Phenothiazine derivatives are non-antibiotics with antimicrobial, fungistatic and fungicidal effects. We exposed to a high energy UV laser beam phenothiazines solutions in water at 20mg/mL concentration to increase antibacterial activity of resulting mixtures. Compared to previous results obtained on bacteria, more research is needed about UV laser irradiated phenothiazines applications on cancer cell cultures to evidence possible anticancerous properties. Evaluation of the safety of the newly obtained photoproducts in view of use on humans is also needed. Due to expensive animal testing in toxicology and pressure from general public and governments to develop alternatives to in vivo testing, in vitro cell-based models are attractive for preliminary testing of new materials. Cytotoxicity screening reported here shows that laser irradiated (4h exposure time length) chlorpromazine and promazine are more efficient against some cell cultures. Interaction of laser irradiated phenothiazines with fabrics show that promethazine and chlorpromazine have improved wetting properties. Correlation of these two groups of properties shows that chlorpromazine appears to be more recommended for applications on tissues using fabrics as transport vectors. The reported results concern stability study of phenothiazines water solutions to know the time limits within which they are stable and may be used.


Subject(s)
Lasers , Phenothiazines/toxicity , Textiles , 3T3 Cells , Animals , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Mice , Phenothiazines/administration & dosage
11.
J Biomed Opt ; 20(5): 051002, 2015 May.
Article in English | MEDLINE | ID: mdl-25365041

ABSTRACT

The study reports an investigation of the photoproducts obtained by exposure of chlorpromazine hydrochloride in ultrapure water (concentration 2 mg/mL) to a 266-nm laser beam obtained by fourth harmonic generation from a Nd:YAG laser (6-ns full time width at half maximum, 10-Hz pulse repetition rate). The photoproducts were analyzed by steady-state UV-Vis absorption, laser-induced fluorescence, Fourier transform infrared spectroscopy, and liquid chromatography-tandem time-of-flight mass spectroscopy. Two figures showing pathways that take place during irradiation for obtaining the final products are shown. The quantum yield of singlet oxygen generation by chlorpromazine (CPZ) was determined relative to standard Zn-phthalocyanine in dimethyl sulfoxide. To outline the role of fluorescence in photoproducts formation rates, fluorescence quantum yield of CPZ during exposure to 355-nm radiation (third harmonic of the fundamental beam of Nd:YAG laser) was investigated relative to standard Coumarin 1 in ethanol. The CPZ solutions exposed 60 and 240 min to 266-nm laser beam, respectively, were tested against Staphylococcus aureus ATCC 25923 strain. For 25 µL of CPZ samples irradiated 240 min, a higher diameter of inhibition has obtained against the tested strain than for the 60-min exposed ones.


Subject(s)
Anti-Infective Agents/chemistry , Chlorpromazine/chemistry , Lasers , Staphylococcus aureus/drug effects , Biological Assay , Chromatography, Liquid , Coumarins/chemistry , Dimethyl Sulfoxide/chemistry , Ethanol/chemistry , Indoles/chemistry , Isoindoles , Mass Spectrometry , Microbial Sensitivity Tests , Oxygen/chemistry , Singlet Oxygen/chemistry , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/metabolism , Ultraviolet Rays , Zinc/chemistry
12.
Int J Pharm ; 475(1-2): 270-81, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25148730

ABSTRACT

Phenothiazine drugs - chlorpromazine (CPZ), promazine (PZ) and promethazine (PMZ) - were exposed to 266 nm (fourth harmonic of the Nd:YAG pulsed laser radiation) in order to be modified at molecular level and to produce an enhancement of their antibacterial activity. The irradiated samples were analysed by several methods: pH and surface tension measurements, UV-vis-NIR absorption spectroscopy, laser induced fluorescence and thin layer chromatography. The purpose of these investigations was to study and describe the modified properties of the medicines to further investigate their specific interactions with materials such as cotton, polyester and Parafilm M as a model smooth surface. The textile materials may be impregnated with phenothiazines drug solutions exposed to laser radiation in order to be used in treatments applied on the surface of the organism. Some of the phenothiazines solutions exposed prolonged time intervals to laser radiation have much better activity against several bacteria. Therefore, in the paper, it is reported the wetting behaviour of CPZ, PZ and PMZ solutions, irradiated for time intervals between 1 and 240 min, on the surfaces of the three textures in order to draw a conclusion about their wettability as a function of time.


Subject(s)
Phenothiazines/chemistry , Solutions/chemistry , Anti-Bacterial Agents/chemistry , Chlorpromazine/chemistry , Chromatography, Thin Layer/methods , Cotton Fiber , Hydrogen-Ion Concentration , Lasers , Paraffin/chemistry , Polyesters/chemistry , Promazine/chemistry , Promethazine/chemistry , Surface Tension , Wettability
13.
In Vivo ; 27(5): 605-10, 2013.
Article in English | MEDLINE | ID: mdl-23988894

ABSTRACT

Chlorpromazine (CPZ) was exposed to a 266 nm laser beam for different periods of time ranging from minutes to 24 h. At intervals, the products from irradiation were evaluated by thin-layer chromatography (TLC) and evaluated for their activity against mycobacteria of human interest (Mycobacterium tuberculosis, M. avium, M. intracellulare and their corresponding reference strains or clinical isolates). With the exception of the M. avium 47/07 clinical strain, the products produced from the irradiation of CPZ for 4 h had greater activity against M. intracellulare ATCC, M. avium ATCC, H37Rv and the Multidrug-resistant tuberculosis (MDR-TB) strains as opposed to that produced by the unirradiated control. The level of products from the 4-h exposure of CPZ remained the same throughout the next 20 h of irradiation. Of significant note is that the irradiation products of CPZ had lower in vitro cytotoxicity against human cells, suggesting that this approach may be useful for the development of compounds more bioactive than the parental species.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Chlorpromazine/chemistry , Chlorpromazine/radiation effects , Lasers , Mycobacterium/drug effects , Antitubercular Agents/toxicity , Cell Line , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests
14.
PLoS One ; 8(2): e55767, 2013.
Article in English | MEDLINE | ID: mdl-23405212

ABSTRACT

INTRODUCTION: Phenothiazines when exposed to white light or to UV radiation undergo a variety of reactions that result in degradation of parental compound and formation of new species. This process is slow and may be sped up with exposure to high energy light such as that produced by a laser. METHODS: Varying concentrations of Chlorpromazine Hydrochloride (CPZ) (2-20 mg/mL in distilled water) were exposed to 266 nm laser beam (time intervals: 1-24 hrs). At distinct intervals the irradiation products were evaluated by spectrophotometry between 200-1500 nm, Thin Layer Chromatography, High Pressure Liquid Chromatography (HPLC)-Diode Array Detection, HPLC tandem mass spectrometry, and for activity against the CPZ sensitive test organism Staphylococcus aureus ATCC 25923. RESULTS: CPZ exposure to 266 nm laser beam of given energy levels yielded species, whose number increased with duration of exposure. Although the major species produced were Promazine (PZ), hydroxypromazine or PZ sulfoxide, and CPZ sulfoxide, over 200 compounds were generated with exposure of 20 mg/mL of CPZ for 24 hrs. Evaluation of the irradiation products indicated that the bioactivity against the test organism increased despite the total disappearance of CPZ, that is due, most probably, to one or more new species that remain yet unidentified. CONCLUSIONS: Exposure of CPZ to a high energy (6.5 mJ) 266 nm laser beam yields rapidly a large number of new and stable species. For biological grade phenothiazines (in other words knowing the impurities in the samples: solvent and solute) this process may be reproducible because one can control within reasonably low experimental errors: the concentration of the parent compound, the laser beam wavelength and average energy, as well as the duration of the exposure time. Because the process is "clean" and rapid, it may offer advantages over the pyrogenically based methods for the production of derivatives.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chlorpromazine/radiation effects , Dopamine Antagonists/radiation effects , Drug Discovery , Lasers , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/radiation effects , Chlorpromazine/analogs & derivatives , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Microbial Sensitivity Tests , Tandem Mass Spectrometry
15.
Recent Pat Antiinfect Drug Discov ; 6(2): 147-57, 2011 May.
Article in English | MEDLINE | ID: mdl-21517738

ABSTRACT

Whereas exposure of combinations of a phenothiazine and bacterium to incoherent UV increases the activity of the phenothiazine, exposure of the phenothiazine alone does not yield an increase of its activity. Because the laser beam energy is greater than that produced by the incoherent UV sources, exposure of phenothiazines to specific lasers may yield molecules with altered activities over that of the unexposed parent. Chlorpromazine, thioridazine and promethazine active against bacteria were exposed to two distinct lasers for varying periods of time. Absorption and fluorescence spectra were conducted prior to and post-exposure and the products of laser exposure evaluated for activity against a Staphylococcus aureus ATCC strain via a disk susceptibility assay. Exposure to lasers alters the absorption/fluorescence spectra of the phenothiazines; reduces the activity of thioridazine against the test bacterium; produces a highly active chlorpromazine compound against the test organism. Exposure of phenothiazines to lasers alters their structure that results in altered activity against a bacterium. This is the first report that lasers can alter the physico-chemico characteristics to the extent that altered bioactivity results. Exposure to lasers is expected to yield compounds that are difficult to make via chemical manipulation methods. A survey of selected patents of interest, even co-lateral for the subject of this article is shortly made.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/radiation effects , Lasers, Solid-State , Phenothiazines/pharmacology , Phenothiazines/radiation effects , Anti-Bacterial Agents/chemistry , Chemistry, Pharmaceutical , Chlorpromazine/pharmacology , Chlorpromazine/radiation effects , Disk Diffusion Antimicrobial Tests , Drug Discovery , Molecular Structure , Patents as Topic , Phenothiazines/chemistry , Promethazine/pharmacology , Promethazine/radiation effects , Spectrometry, Fluorescence , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Structure-Activity Relationship , Technology, Pharmaceutical/methods , Thioridazine/pharmacology , Thioridazine/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...