Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Anal Biochem ; 265(2): 299-307, 1998 Dec 15.
Article in English | MEDLINE | ID: mdl-9882406

ABSTRACT

The kinetics of the phosphorolysis of 7-methylated guanosine analogues catalyzed by purine nucleoside phosphorylase has been analyzed to understand the use of this system as a "Pi mop" to remove Pi from solutions and as a spectroscopic assay for Pi at micromolar concentrations. An expression system was developed for the phosphorylase from Escherichia coli: this protein (subunit molecular mass 26 kDa) and one from a commercial source (29 kDa) were used in this study. Rates of >50 s-1 were obtained for the phosphorolysis at 30 degrees C, so that when the phosphorylase is coupled to the phosphatase being studied, rates of Pi release from the phosphatase can be measured close to this rate. The kinetic mechanism appears to obey the Michaelis-Menten model in the steady state with the bond cleavage rate limiting. Slow hydrolysis of ribose-1-phosphate to Pi catalyzed by the phosphorylase limits the efficiency of the Pi mop. To overcome this, phosphodeoxyribomutase was used to catalyze the conversion of ribose-1-phosphate to ribose-5-phosphate, enabling the Pi mop to remove large amounts of Pi quantitatively. Acyclovir diphosphate provides a simple method to switch off the Pi mop as it is a tight inhibitor (Kd 12 nM) of purine nucleoside phosphorylase.


Subject(s)
Phosphates/analysis , Phosphotransferases/chemistry , Purine-Nucleoside Phosphorylase/chemistry , Spectrometry, Fluorescence/methods , Acyclovir/pharmacology , Catalysis , Enzyme Inhibitors/pharmacology , Kinetics , Phosphotransferases/antagonists & inhibitors
2.
Biophys J ; 73(3): 1532-8, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9284320

ABSTRACT

The electrophoretic behavior of defined DNA and RNA oligonucleotide duplexes from 10 to 20 bp in length has been investigated as a function of salt conditions, gel concentration, and temperature. The RNA oligomers migrated much more slowly than the DNA oligomers of the same sequence under all conditions. From sedimentation equilibrium and velocity measurements, the apparent partial specific volume in 0.1 M KCI, 20 mM NaPi, pH 7, was determined as 0.56 +/- 0.015 ml g(-1) for DNA and 0.508 ml g(-1) for RNA. The translational friction coefficients were determined and compared with the values calculated for cylinders. Taking into account the shape factors, the solution density, and partial specific volumes, the effective degree of hydration was estimated as 0.8-1 g g(-1) DNA. There was no significant difference in the frictional coefficients of the DNA and RNA oligomers, indicating that the effective sizes of DNA and RNA are very similar in solution. The differential electrophoretic mobility of DNA and RNA must arise from the differences in interaction with counterions, which is probably a global property of the oligonucleotides.


Subject(s)
DNA/chemistry , Nucleic Acid Heteroduplexes/chemistry , Oligodeoxyribonucleotides/chemistry , Oligoribonucleotides/chemistry , RNA/chemistry , Base Sequence , Electrophoresis, Polyacrylamide Gel/methods , Kinetics , Models, Chemical , Osmolar Concentration , Software , Structure-Activity Relationship , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...