Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746328

ABSTRACT

Syntactic processing and verbal working memory are both essential components to sentence comprehension. Nonetheless, the separability of these systems in the brain remains unclear. To address this issue, we performed causal-inference analyses based on lesion and connectome network mapping using MRI and behavioral testing in 103 individuals with chronic post-stroke aphasia. We employed a rhyme judgment task with heavy working memory load without articulatory confounds, controlling for the overall ability to match auditory words to pictures and to perform a metalinguistic rhyme judgment, isolating the effect of working memory load. We assessed noncanonical sentence comprehension, isolating syntactic processing by incorporating residual rhyme judgment performance as a covariate for working memory load. Voxel-based lesion analyses and structural connectome-based lesion symptom mapping controlling for total lesion volume were performed, with permutation testing to correct for multiple comparisons (4,000 permutations). We observed that effects of working memory load localized to dorsal stream damage: posterior temporal-parietal lesions and frontal-parietal white matter disconnections. These effects were differentiated from syntactic comprehension deficits, which were primarily associated with ventral stream damage: lesions to temporal lobe and temporal-parietal white matter disconnections, particularly when incorporating the residual measure of working memory load as a covariate. Our results support the conclusion that working memory and syntactic processing are associated with distinct brain networks, largely loading onto dorsal and ventral streams, respectively.

2.
Brain Commun ; 6(3): fcae165, 2024.
Article in English | MEDLINE | ID: mdl-38799618

ABSTRACT

Studies of intracranial EEG networks have been used to reveal seizure generators in patients with drug-resistant epilepsy. Intracranial EEG is implanted to capture the epileptic network, the collection of brain tissue that forms a substrate for seizures to start and spread. Interictal intracranial EEG measures brain activity at baseline, and networks computed during this state can reveal aberrant brain tissue without requiring seizure recordings. Intracranial EEG network analyses require choosing a reference and applying statistical measures of functional connectivity. Approaches to these technical choices vary widely across studies, and the impact of these technical choices on downstream analyses is poorly understood. Our objective was to examine the effects of different re-referencing and connectivity approaches on connectivity results and on the ability to lateralize the seizure onset zone in patients with drug-resistant epilepsy. We applied 48 pre-processing pipelines to a cohort of 125 patients with drug-resistant epilepsy recorded with interictal intracranial EEG across two epilepsy centres to generate intracranial EEG functional connectivity networks. Twenty-four functional connectivity measures across time and frequency domains were applied in combination with common average re-referencing or bipolar re-referencing. We applied an unsupervised clustering algorithm to identify groups of pre-processing pipelines. We subjected each pre-processing approach to three quality tests: (i) the introduction of spurious correlations; (ii) robustness to incomplete spatial sampling; and (iii) the ability to lateralize the clinician-defined seizure onset zone. Three groups of similar pre-processing pipelines emerged: common average re-referencing pipelines, bipolar re-referencing pipelines and relative entropy-based connectivity pipelines. Relative entropy and common average re-referencing networks were more robust to incomplete electrode sampling than bipolar re-referencing and other connectivity methods (Friedman test, Dunn-Sidák test P < 0.0001). Bipolar re-referencing reduced spurious correlations at non-adjacent channels better than common average re-referencing (Δ mean from machine ref = -0.36 versus -0.22) and worse in adjacent channels (Δ mean from machine ref = -0.14 versus -0.40). Relative entropy-based network measures lateralized the seizure onset hemisphere better than other measures in patients with temporal lobe epilepsy (Benjamini-Hochberg-corrected P < 0.05, Cohen's d: 0.60-0.76). Finally, we present an interface where users can rapidly evaluate intracranial EEG pre-processing choices to select the optimal pre-processing methods tailored to specific research questions. The choice of pre-processing methods affects downstream network analyses. Choosing a single method among highly correlated approaches can reduce redundancy in processing. Relative entropy outperforms other connectivity methods in multiple quality tests. We present a method and interface for researchers to optimize their pre-processing methods for deriving intracranial EEG brain networks.

3.
Neurology ; 102(12): e209451, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38820468

ABSTRACT

BACKGROUND AND OBJECTIVES: Postoperative seizure control in drug-resistant temporal lobe epilepsy (TLE) remains variable, and the causes for this variability are not well understood. One contributing factor could be the extensive spread of synchronized ictal activity across networks. Our study used novel quantifiable assessments from intracranial EEG (iEEG) to test this hypothesis and investigated how the spread of seizures is determined by underlying structural network topological properties. METHODS: We evaluated iEEG data from 157 seizures in 27 patients with TLE: 100 seizures from 17 patients with postoperative seizure control (Engel score I) vs 57 seizures from 10 patients with unfavorable surgical outcomes (Engel score II-IV). We introduced a quantifiable method to measure seizure power dynamics within anatomical regions, refining existing seizure imaging frameworks and minimizing reliance on subjective human decision-making. Time-frequency power representations were obtained in 6 frequency bands ranging from theta to gamma. Ictal power spectrums were normalized against a baseline clip taken at least 6 hours away from ictal events. Electrodes' time-frequency power spectrums were then mapped onto individual T1-weighted MRIs and grouped based on a standard brain atlas. We compared spatiotemporal dynamics for seizures between groups with favorable and unfavorable surgical outcomes. This comparison included examining the range of activated brain regions and the spreading rate of ictal activities. We then evaluated whether regional iEEG power values were a function of fractional anisotropy (FA) from diffusion tensor imaging across regions over time. RESULTS: Seizures from patients with unfavorable outcomes exhibited significantly higher maximum activation sizes in various frequency bands. Notably, we provided quantifiable evidence that in seizures associated with unfavorable surgical outcomes, the spread of beta-band power across brain regions is significantly faster, detectable as early as the first second after seizure onset. There was a significant correlation between beta power during seizures and FA in the corresponding areas, particularly in the unfavorable outcome group. Our findings further suggest that integrating structural and functional features could improve the prediction of epilepsy surgical outcomes. DISCUSSION: Our findings suggest that ictal iEEG power dynamics and the structural-functional relationship are mechanistic factors associated with surgical outcomes in TLE.


Subject(s)
Drug Resistant Epilepsy , Electroencephalography , Epilepsy, Temporal Lobe , Humans , Male , Female , Adult , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/diagnostic imaging , Treatment Outcome , Middle Aged , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/diagnostic imaging , Young Adult , Magnetic Resonance Imaging , Seizures/surgery , Seizures/physiopathology , Brain/physiopathology , Brain/surgery , Brain/diagnostic imaging , Electrocorticography/methods , Adolescent
4.
Epilepsy Behav ; 157: 109835, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38820686

ABSTRACT

INTRODUCTION: Intracerebral hemorrhage represents 15 % of all strokes and it is associated with a high risk of post-stroke epilepsy. However, there are no reliable methods to accurately predict those at higher risk for developing seizures despite their importance in planning treatments, allocating resources, and advancing post-stroke seizure research. Existing risk models have limitations and have not taken advantage of readily available real-world data and artificial intelligence. This study aims to evaluate the performance of Machine-learning-based models to predict post-stroke seizures at 1 year and 5 years after an intracerebral hemorrhage in unselected patients across multiple healthcare organizations. DESIGN/METHODS: We identified patients with intracerebral hemorrhage (ICH) without a prior diagnosis of seizures from 2015 until inception (11/01/22) in the TriNetX Diamond Network, using the International Classification of Diseases, Tenth Revision (ICD-10) I61 (I61.0, I61.1, I61.2, I61.3, I61.4, I61.5, I61.6, I61.8, and I61.9). The outcome of interest was any ICD-10 diagnosis of seizures (G40/G41) at 1 year and 5 years following the first occurrence of the diagnosis of intracerebral hemorrhage. We applied a conventional logistic regression and a Light Gradient Boosted Machine (LGBM) algorithm, and the performance of the model was assessed using the area under the receiver operating characteristics (AUROC), the area under the precision-recall curve (AUPRC), the F1 statistic, model accuracy, balanced-accuracy, precision, and recall, with and without seizure medication use in the models. RESULTS: A total of 85,679 patients had an ICD-10 code of intracerebral hemorrhage and no prior diagnosis of seizures, constituting our study cohort. Seizures were present in 4.57 % and 6.27 % of patients within 1 and 5 years after ICH, respectively. At 1-year, the AUROC, AUPRC, F1 statistic, accuracy, balanced-accuracy, precision, and recall were respectively 0.7051 (standard error: 0.0132), 0.1143 (0.0068), 0.1479 (0.0055), 0.6708 (0.0076), 0.6491 (0.0114), 0.0839 (0.0032), and 0.6253 (0.0216). Corresponding metrics at 5 years were 0.694 (0.009), 0.1431 (0.0039), 0.1859 (0.0064), 0.6603 (0.0059), 0.6408 (0.0119), 0.1094 (0.0037) and 0.6186 (0.0264). These numerical values indicate that the statistical models fit the data very well. CONCLUSION: Machine learning models applied to electronic health records can improve the prediction of post-hemorrhagic stroke epilepsy, presenting a real opportunity to incorporate risk assessments into clinical decision-making in post-stroke care clinical care and improve patients' selection for post-stroke epilepsy research.

5.
Brain Commun ; 6(2): fcae102, 2024.
Article in English | MEDLINE | ID: mdl-38585671

ABSTRACT

Language comprehension is often affected in individuals with post-stroke aphasia. However, deficits in auditory comprehension are not fully correlated with deficits in reading comprehension and the mechanisms underlying this dissociation remain unclear. This distinction is important for understanding language mechanisms, predicting long-term impairments and future development of treatment interventions. Using comprehensive auditory and reading measures from a large cohort of individuals with aphasia, we evaluated the relationship between aphasia type and reading comprehension impairments, the relationship between auditory versus reading comprehension deficits and the crucial neuroanatomy supporting the dissociation between post-stroke reading and auditory deficits. Scores from the Western Aphasia Battery-Revised from 70 participants with aphasia after a left-hemisphere stroke were utilized to evaluate both reading and auditory comprehension of linguistically equivalent stimuli. Repeated-measures and univariate ANOVA were used to assess the relationship between auditory comprehension and aphasia types and correlations were employed to test the relationship between reading and auditory comprehension deficits. Lesion-symptom mapping was used to determine the dissociation of crucial brain structures supporting reading comprehension deficits controlling for auditory deficits and vice versa. Participants with Broca's or global aphasia had the worst performance on reading comprehension. Auditory comprehension explained 26% of the variance in reading comprehension for sentence completion and 44% for following sequential commands. Controlling for auditory comprehension, worse reading comprehension performance was independently associated with damage to the inferior temporal gyrus, fusiform gyrus, posterior inferior temporal gyrus, inferior occipital gyrus, lingual gyrus and posterior thalamic radiation. Auditory and reading comprehension are only partly correlated in aphasia. Reading is an integral part of daily life and directly associated with quality of life and functional outcomes. This study demonstrated that reading performance is directly related to lesioned areas in the boundaries between visual association regions and ventral stream language areas. This behavioural and neuroanatomical dissociation provides information about the neurobiology of language and mechanisms for potential future treatment interventions.

6.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38496668

ABSTRACT

Objectives: Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods: We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results: In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions: This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.

7.
J Clin Neurophysiol ; 41(4): 317-321, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38376938

ABSTRACT

SUMMARY: Current preoperative evaluation of epilepsy can be challenging because of the lack of a comprehensive view of the network's dysfunctions. To demonstrate the utility of our multimodal neurophysiology and neuroimaging integration approach in the presurgical evaluation, we present a proof-of-concept for using this approach in a patient with nonlesional frontal lobe epilepsy who underwent two resective surgeries to achieve seizure control. We conducted a post-hoc investigation using four neuroimaging and neurophysiology modalities: diffusion tensor imaging, resting-state functional MRI, and stereoelectroencephalography at rest and during seizures. We computed region-of-interest-based connectivity for each modality and applied betweenness centrality to identify key network hubs across modalities. Our results revealed that despite seizure semiology and stereoelectroencephalography indicating dysfunction in the right orbitofrontal region, the maximum overlap on the hubs across modalities extended to right temporal areas. Notably, the right middle temporal lobe region served as an overlap hub across diffusion tensor imaging, resting-state functional MRI, and rest stereoelectroencephalography networks and was only included in the resected area in the second surgery, which led to long-term seizure control of this patient. Our findings demonstrated that transmodal hubs could help identify key areas related to epileptogenic network. Therefore, this case presents a promising perspective of using a multimodal approach to improve the presurgical evaluation of patients with epilepsy.


Subject(s)
Diffusion Tensor Imaging , Electroencephalography , Magnetic Resonance Imaging , Multimodal Imaging , Humans , Electroencephalography/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Adult , Male , Female , Brain/surgery , Brain/physiopathology , Brain/diagnostic imaging , Epilepsy/surgery , Epilepsy/physiopathology , Epilepsy/diagnostic imaging , Epilepsy, Frontal Lobe/surgery , Epilepsy, Frontal Lobe/physiopathology , Epilepsy, Frontal Lobe/diagnostic imaging
8.
Neuroimage Clin ; 41: 103566, 2024.
Article in English | MEDLINE | ID: mdl-38280310

ABSTRACT

BACKGROUND: Volumetric investigations of cortical damage resulting from stroke indicate that lesion size and shape continue to change even in the chronic stage of recovery. However, the potential clinical relevance of continued lesion growth has yet to be examined. In the present study, we investigated the prevalence of lesion expansion and the relationship between expansion and changes in aphasia severity in a large sample of individuals in the chronic stage of aphasia recovery. METHODS: Retrospective structural MRI scans from 104 S survivors with at least 2 observations (k = 301 observations; mean time between scans = 31 months) were included. Lesion demarcation was performed using an automated lesion segmentation software and lesion volumes at each timepoint were subsequently calculated. A linear mixed effects model was conducted to investigate the effect of days between scan on lesion expansion. Finally, we investigated the association between lesion expansion and changes on the Western Aphasia Battery (WAB) in a group of participants assessed and scanned at 2 timepoints (N = 54) using a GLM. RESULTS: Most participants (81 %) showed evidence of lesion expansion. The mixed effects model revealed lesion volumes significantly increase, on average, by 0.02 cc each day (7.3 cc per year) following a scan (p < 0.0001). Change on language performance was significantly associated with change in lesion volume (p = 0.025) and age at stroke (p = 0.031). The results suggest that with every 10 cc increase in lesion size, language performance decreases by 0.9 points, and for every 10-year increase in age at stroke, language performance decreases by 1.9 points. CONCLUSIONS: The present study confirms and extends prior reports that lesion expansion occurs well into the chronic stage of stroke. For the first time, we present evidence that expansion is predictive of longitudinal changes in language performance in individuals with aphasia. Future research should focus on the potential mechanisms that may lead to necrosis in areas surrounding the chronic stroke lesion.


Subject(s)
Aphasia , Stroke , Humans , Retrospective Studies , Aphasia/etiology , Aphasia/complications , Stroke/complications , Stroke/diagnostic imaging , Stroke/pathology , Magnetic Resonance Imaging/methods , Language
9.
Article in English | MEDLINE | ID: mdl-38212059

ABSTRACT

BACKGROUND: With expanding neurosurgical options in epilepsy, it is important to characterise each options' risk for postoperative cognitive decline. Here, we characterise how patients' preoperative white matter (WM) networks relates to postoperative memory changes following different epilepsy surgeries. METHODS: Eighty-nine patients with temporal lobe epilepsy with T1-weighted and diffusion-weighted imaging as well as preoperative and postoperative verbal memory scores (prose recall) underwent either anterior temporal lobectomy (ATL: n=38) or stereotactic laser amygdalohippocampotomy (SLAH; n=51). We computed laterality indices (ie, asymmetry) for volume of the hippocampus and fractional anisotropy (FA) of two deep WM tracts (uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF)). RESULTS: Preoperatively, left-lateralised FA of the ILF was associated with higher prose recall (p<0.01). This pattern was not observed for the UF or hippocampus (ps>0.05). Postoperatively, right-lateralised FA of the UF was associated with less decline following left ATL (p<0.05) but not left SLAH (p>0.05), while right-lateralised hippocampal asymmetry was associated with less decline following both left ATL and SLAH (ps<0.05). After accounting for preoperative memory score, age of onset and hippocampal asymmetry, the association between UF and memory decline in left ATL remained significant (p<0.01). CONCLUSIONS: Asymmetry of the hippocampus is an important predictor of risk for memory decline following both surgeries. However, asymmetry of UF integrity, which is only severed during ATL, is an important predictor of memory decline after ATL only. As surgical procedures and pre-surgical mapping evolve, understanding the role of frontal-temporal WM in memory networks could help to guide more targeted surgical approaches to mitigate cognitive decline.

10.
J Neurol Neurosurg Psychiatry ; 95(3): 273-276, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38071545

ABSTRACT

BACKGROUND: Language impairment (aphasia) is a common neurological deficit after strokes. For individuals with chronic aphasia (beyond 6 months after the stroke), language improvements with speech therapy (ST) are often limited. Transcranial direct current stimulation (tDCS) is a promising approach to complement language recovery but interindividual variability in treatment response is common after tDCS, suggesting a possible relationship between tDCS and type of linguistic impairment (aphasia type). METHODS: This current study is a subgroup analysis of a randomised controlled phase II futility design clinical trial on tDCS in chronic post-stroke aphasia. All participants received ST coupled with tDCS (n=31) vs sham tDCS (n=39). Confrontation naming was tested at baseline, and 1, 4, and 24 weeks post-treatment. RESULTS: Broca's aphasia was associated with maximal adjunctive benefit of tDCS, with an average improvement of 10 additional named items with tDCS+ST compared with ST alone at 4 weeks post-treatment. In comparison, tDCS was not associated with significant benefits for other aphasia types F(1)=4.23, p=0.04. Among participants with Broca's aphasia, preservation of the perilesional posterior inferior temporal cortex was associated with higher treatment benefit (R=0.35, p=0.03). CONCLUSIONS: These results indicate that adjuvant tDCS can enhance ST to treat naming in Broca's aphasia, and this may guide intervention approaches in future studies.


Subject(s)
Aphasia , Stroke , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Aphasia/etiology , Aphasia/therapy , Stroke/complications , Stroke/therapy , Language , Speech Therapy
11.
Mov Disord Clin Pract ; 10(12): 1795-1799, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094653

ABSTRACT

Background: Decrements in verbal fluency following deep brain stimulation (DBS) in people with Parkinson's disease (PwP) are common. As such, verbal fluency tasks are used in assessing DBS candidacy and target selection. However, the correspondence between testing performance and the patient's perception of communication abilities is not well-established. Methods: The Communication Participation Item Bank (CPIB) was administered to 85 PwP during pre-DBS neuropsychological evaluations. Central tendencies for CPIB responses and correlations between CPIB total scores, clinical and demographic factors, and language-based tasks were examined. Results: Most PwP indicated some degree of communication interference on the CPIB. Worse scores on semantic fluency and greater motor impairment were associated with more communication interference. Conclusions: Our findings suggest an incomplete correspondence between commonly used language-based tests and patient-reported outcomes of communication abilities. The need for a functional communication instrument that reflects the different aspects of communication abilities in functional contexts is emphasized.

12.
J Clin Neurophysiol ; 40(7): 608-615, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37931162

ABSTRACT

PURPOSE: Object naming requires visual decoding, conceptualization, semantic categorization, and phonological encoding, all within 400 to 600 ms of stimulus presentation and before a word is spoken. In this study, we sought to predict semantic categories of naming responses based on prearticulatory brain activity recorded with scalp EEG in healthy individuals. METHODS: We assessed 19 healthy individuals who completed a naming task while undergoing EEG. The naming task consisted of 120 drawings of animate/inanimate objects or abstract drawings. We applied a one-dimensional, two-layer, neural network to predict the semantic categories of naming responses based on prearticulatory brain activity. RESULTS: Classifications of animate, inanimate, and abstract responses had an average accuracy of 80%, sensitivity of 72%, and specificity of 87% across participants. Across participants, time points with the highest average weights were between 470 and 490 milliseconds after stimulus presentation, and electrodes with the highest weights were located over the left and right frontal brain areas. CONCLUSIONS: Scalp EEG can be successfully used in predicting naming responses through prearticulatory brain activity. Interparticipant variability in feature weights suggests that individualized models are necessary for highest accuracy. Our findings may inform future applications of EEG in reconstructing speech for individuals with and without speech impairments.


Subject(s)
Semantics , Speech , Humans , Speech/physiology , Electroencephalography , Cerebral Cortex , Photic Stimulation , Brain Mapping , Brain/physiology
13.
Epilepsy Behav ; 149: 109503, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37931391

ABSTRACT

OBJECTIVE: This proof-of-concept study aimed to examine the overlap between structural and functional activity (coupling) related to surgical response. METHODS: We studied intracranial rest and ictal stereoelectroencephalography (sEEG) recordings from 77 seizures in thirteen participants with temporal lobe epilepsy (TLE) who subsequently underwent resective/laser ablation surgery. We used the stereotactic coordinates of electrodes to construct functional (sEEG electrodes) and structural connectomes (diffusion tensor imaging). A Jaccard index was used to assess the similarity (coupling) between structural and functional connectivity at rest and at various intraictal timepoints. RESULTS: We observed that patients who did not become seizure free after surgery had higher connectome coupling recruitment than responders at rest and during early and mid seizure (and visa versa). SIGNIFICANCE: Structural networks provide a backbone for functional activity in TLE. The association between lack of seizure control after surgery and the strength of synchrony between these networks suggests that surgical intervention aimed to disrupt these networks may be ineffective in those that display strong synchrony. Our results, combined with findings of other groups, suggest a potential mechanism that explains why certain patients benefit from epilepsy surgery and why others do not. This insight has the potential to guide surgical planning (e.g., removal of high coupling nodes) following future research.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Diffusion Tensor Imaging , Treatment Outcome , Seizures , Electroencephalography
14.
Neurobiol Aging ; 132: 56-66, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37729770

ABSTRACT

To elucidate the relationship between age and cognitive decline, it is important to consider structural brain changes such as white matter hyperintensities (WMHs), which are common in older age and may affect behavior. Therefore, we aimed to investigate if WMH load is a mediator of the relationship between age and cognitive decline. Healthy participants (N = 166, 20-80 years) completed the Montreal Cognitive Assessment (MoCA). WMHs were manually delineated on FLAIR scans. Mediation analysis was conducted to determine if WMH load mediates the relationship between age and cognition. Older age was associated with worse cognition (p < 0.001), but this was an indirect effect: older participants had more WMHs, and, in turn, increased WMH load was associated with worse MoCA scores. WMH load mediates the relationship between age and cognitive decline. Importantly, this relationship was not moderated by age (i.e., increased WMH severity is associated with poorer MoCA scores irrespective of age). Across all ages, high cholesterol was associated with increased WMH severity.


Subject(s)
Cognitive Dysfunction , White Matter , Humans , White Matter/diagnostic imaging , Magnetic Resonance Imaging , Cognition , Brain/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/psychology
15.
Neuroimage Clin ; 39: 103480, 2023.
Article in English | MEDLINE | ID: mdl-37536153

ABSTRACT

For the past decade, brain health has been an emerging line of scientific inquiry assessing the impact of age-related neurostructural changes on cognitive decline and recovery from brain injury. Typically, compromised brain health is attributed to the presence of small vessel disease (SVD) and brain tissue atrophy, which are represented by various neuroimaging features. However, to date, the relationship between brain health markers and chronic aphasia severity remains unclear. Thus, the goal of this scoping review was to assess the current body of evidence regarding the relationship between SVD-related brain health biomarkers and post-stroke aphasia and cognition. In all, 187 articles were identified from 3 databases, of which 16 articles met the criteria for inclusion. Among these studies, 11 focused on cognition rather than aphasia, while 2 investigated both. Of the 10 studies that used white matter hyperintensities (WMHs) as an indicator of SVD severity, 8 studies (80%) demonstrated a relationship between WMH load and worse cognition in stroke patients. Interestingly, among the studies that specifically investigated aphasia, all 5 studies (100%) demonstrated a relationship between SVD and worse language performance. They also indicated that factors other than brain health (e.g., lesion, age, time post onset) played an important role in determining aphasia severity at a single timepoint. These findings suggest that brain health is likely a crucial factor in the context of aphasia recovery, possibly indicating the necessity of cognitive reserve thresholds for the multimodal cognitive demands associated with language recovery. While SVD and structural brain health are not commonly considered as predictors of aphasia severity, more comprehensive models incorporating brain health have the potential to improve prognosis of post-stroke cognitive and language deficits. Given the variability in the existing literature, a uniform grading system for overall SVD would be beneficial for future research on the mechanisms related to brain networks and neuroplasticity, and their translational impact.


Subject(s)
Aphasia , Cerebral Small Vessel Diseases , Stroke , Humans , Magnetic Resonance Imaging , Cerebral Small Vessel Diseases/complications , Brain/diagnostic imaging , Cognition , Aphasia/etiology , Aphasia/complications , Stroke/complications , Stroke/diagnostic imaging , Stroke/psychology
16.
Ann Clin Transl Neurol ; 10(9): 1525-1532, 2023 09.
Article in English | MEDLINE | ID: mdl-37403712

ABSTRACT

OBJECTIVE: To examine changes to connectivity after aphasia treatment in the first 3 months after stroke. METHODS: Twenty people experiencing aphasia within the first 3 months of stroke completed MRI before and immediately following 15 hours of language treatment. They were classified based on their response to treatment on a naming test of nouns as either high responders (10% improvement or more), or low responders (<10% improvement). Groups were similar in age, gender distribution, education, days since stroke, stroke volume, and baseline severity. Resting-state functional connectivity analysis was limited to the connectivity of the left fusiform gyrus with the bilateral inferior frontal gyrus, supramarginal gyrus, angular gyrus, and superior, middle, and inferior temporal gyrus, based on previous studies showing the importance of left fusiform gyrus in naming performance. RESULTS: Baseline ipsilateral connectivity between the left fusiform gyrus and the language network was similar between high and low responders to therapy when controlling for stroke volume. Following therapy, change in connectivity was significantly greater among high responders between the left fusiform gyrus and the ipsilateral and contralateral pars triangularis, ipsilateral pars opercularis and superior temporal gyrus, and contralateral angular gyrus when compared with low responders. INTERPRETATION: An account of these findings incorporates primarily proximal connectivity restoration, but also potentially reflects select contralateral compensatory reorganization. The latter is often associated with chronic recovery, reflecting the transitional nature of the subacute period.


Subject(s)
Aphasia , Stroke , Humans , Brain/diagnostic imaging , Aphasia/diagnostic imaging , Aphasia/etiology , Stroke/complications , Stroke/diagnostic imaging , Language , Magnetic Resonance Imaging
17.
Neurobiol Aging ; 130: 135-140, 2023 10.
Article in English | MEDLINE | ID: mdl-37506551

ABSTRACT

BACKGROUND: Premature age-related brain changes may be influenced by physical health factors. Lower socioeconomic status (SES) is often associated with poorer physical health. In this study, we aimed to investigate the relationship between SES and premature brain aging. METHODS: Brain age was estimated from T1-weighted images using BrainAgeR in 217 participants from the ABC@UofSC Repository. The difference between brain and chronological age (BrainGAP) was calculated. Multiple regression models were used to predict BrainGAP with age, SES, body mass index, diabetes, hypertension, sex, race, and education as predictors. SES was calculated from size-adjusted household income and the cost of living. RESULTS: Fifty-five participants (25.35%) had greater brain age than chronological age (premature brain aging). Multiple regression models revealed that age, sex, and SES were significant predictors of BrainGAP with lower SES associated with greater BrainGAP (premature brain aging). CONCLUSIONS: This study demonstrates that lower SES is an independent contributor to premature brain aging. This may provide additional insight into the mechanisms associated with brain health, cognition, and resilience to neurological injury.


Subject(s)
Aging, Premature , Hypertension , Humans , Social Class , Brain/diagnostic imaging , Educational Status , Aging, Premature/etiology , Aging , Socioeconomic Factors
18.
Commun Biol ; 6(1): 727, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452209

ABSTRACT

Brain structure deteriorates with aging and predisposes an individual to more severe language impairments (aphasia) after a stroke. However, the underlying mechanisms of this relation are not well understood. Here we use an approach to model brain network properties outside the stroke lesion, network controllability, to investigate relations among individualized structural brain connections, brain age, and aphasia severity in 93 participants with chronic post-stroke aphasia. Controlling for the stroke lesion size, we observe that lower average controllability of the posterior superior temporal gyrus (STG) mediates the relation between advanced brain aging and aphasia severity. Lower controllability of the left posterior STG signifies that activity in the left posterior STG is less likely to yield a response in other brain regions due to the topological properties of the structural brain networks. These results indicate that advanced brain aging among individuals with post-stroke aphasia is associated with disruption of dynamic properties of a critical language-related area, the STG, which contributes to worse aphasic symptoms. Because brain aging is variable among individuals with aphasia, our results provide further insight into the mechanisms underlying the variance in clinical trajectories in post-stroke aphasia.


Subject(s)
Aphasia , Stroke , Humans , Brain Mapping , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Aphasia/etiology , Aphasia/diagnosis , Aphasia/pathology , Stroke/complications , Temporal Lobe
19.
Res Sq ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461696

ABSTRACT

Emerging evidence suggests that post-stroke aphasia severity depends on the integrity of the brain beyond the stroke lesion. While measures of lesion anatomy and brain integrity combine synergistically to explain aphasic symptoms, significant interindividual variability remains unaccounted for. A possible explanatory factor may be the spatial distribution of brain atrophy beyond the lesion. This includes not just the specific brain areas showing atrophy, but also distinct three-dimensional patterns of atrophy. Here, we tested whether deep learning with Convolutional Neural Networks (CNN) on whole brain morphometry (i.e., segmented tissue volumes) and lesion anatomy can better predict which individuals with chronic stroke (N=231) have severe aphasia, and whether encoding spatial dependencies in the data might be capable of improving predictions by identifying unique individualized spatial patterns. We observed that CNN achieves significantly higher accuracy and F1 scores than Support Vector Machine (SVM), even when the SVM is nonlinear or integrates linear and nonlinear dimensionality reduction techniques. Performance parity was only achieved when the SVM was directly trained on the latent features learned by the CNN. Saliency maps demonstrated that the CNN leveraged widely distributed patterns of brain atrophy predictive of aphasia severity, whereas the SVM focused almost exclusively on the area around the lesion. Ensemble clustering of CNN saliency maps revealed distinct morphometry patterns that were unrelated to lesion size, highly consistent across individuals, and implicated unique brain networks associated with different cognitive processes as measured by the wider neuroimaging literature. Individualized predictions of severity depended on both ipsilateral and contralateral features outside of the location of stroke. Our findings illustrate that three-dimensional network distributions of atrophy in individuals with aphasia are directly associated with aphasia severity, underscoring the potential for deep learning to improve prognostication of behavioral outcomes from neuroimaging data, and highlighting the prospective benefits of interrogating spatial dependence at different scales in multivariate feature space.

20.
Seizure ; 110: 86-92, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331198

ABSTRACT

PURPOSE: This study investigated the success rate of antiseizure medications (ASMs) withdrawal following MRI Guided Laser Interstitial Thermal Therapy (MRg-LITT) for extra-temporal lobe epilepsy (ETLE), and identified predictors of seizure recurrence. METHODS: We retrospectively assessed 27 patients who underwent MRg-LITT for ETLE. Patients' demographics, disease characteristics, and post-surgical outcomes were evaluated for their potential to predict seizure recurrence associated with ASMs withdrawal. RESULTS: The median period of observation post MRg-LITT was 3 years (range 18 - 96 months) and the median period to initial ASMs reduction was 0.5 years (range 1-36 months). ASMs reduction was attempted in 17 patients (63%), 5 (29%) of whom had seizure recurrence after initial reduction. Nearly all patient who relapsed regained seizure control after reinstitution of their ASMs regimen. Pre-operative seizure frequency (p = 0.002) and occurrence of acute post-operative seizures (p = 0.01) were associated with increased risk for seizure recurrence post ASMs reduction. At the end of the observation period, 11% of patients were seizure free without drugs, 52% were seizure free with drugs and 37% still experienced seizures despite ASMs. Compared with pre-operative status, the number of ASMs was reduced in 41% of patients, unchanged in 55% of them and increased in only 4% of them. CONCLUSIONS: Successful MRg-LITT for ETLE allows for ASMs reduction in a significant portion of patients and complete ASMs withdrawal in a subset of them. Patients with higher pre-operative seizure frequency or occurrence of acute post operative seizures exhibit higher chances relapse post ASMs reduction.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Laser Therapy , Humans , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/surgery , Retrospective Studies , Treatment Outcome , Seizures/drug therapy , Seizures/surgery , Epilepsy/surgery , Magnetic Resonance Imaging , Lasers , Anticonvulsants/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...