Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38139145

ABSTRACT

Adolescent binge drinking is a social problem with a long-lasting impact on cognitive functions. The cannabinoid type-1 (CB1) receptor of the endocannabinoid system (ECS) is involved in brain synaptic plasticity, cognition and behavior via receptor localization at specific subcellular compartments of the cortical, limbic and motor regions. Alcohol (EtOH) intake affects the ECS, CB1 and their functions. Evidence indicates that binge drinking during adolescence impairs memory via the abrogation of CB1-dependent synaptic plasticity in the hippocampus. However, the impact of EtOH consumption on global CB1 receptor expression in the adult brain is unknown. We studied this using optical density analysis throughout brain regions processed for light microscopy (LM) immunohistotochemistry. CB1 staining decreased significantly in the secondary motor cortex, cerebellum, cingulate cortex, amygdala and nucleus accumbens. Next, as omega-3 (n-3) polyunsaturated fatty acids (PUFAs) rescue synaptic plasticity and improve EtOH-impaired cognition, we investigated whether docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) had any effect on CB1 receptors. N-3 intake during EtOH abstinence restored CB1 immunostaining in the secondary motor cortex, cerebellum and amygdala, and ameliorated receptor density in the cingulate cortex. These results show that n-3 supplementation recovers CB1 receptor expression disrupted by EtOH in distinct brain regions involved in motor functions and cognition.


Subject(s)
Binge Drinking , Cannabinoids , Mice , Animals , Receptors, Cannabinoid , Ethanol , Endocannabinoids , Brain , Receptor, Cannabinoid, CB1
2.
Glia ; 71(4): 866-879, 2023 04.
Article in English | MEDLINE | ID: mdl-36437738

ABSTRACT

The alteration of the endocannabinoid tone usually associates with changes in the expression and/or function of the cannabinoid CB1 receptor. In Alzheimer's disease (AD), amyloid beta (Aß)-containing aggregates induce a chronic inflammatory response leading to reactivity of both microglia and astrocytes. However, how this glial response impacts on the glial CB1 receptor expression in the subiculum of a mouse model of AD, a brain region particularly affected by large accumulation of plaques and concomitant subcellular changes in microglia and astrocytes, is unknown. The CB1 receptor localization in both glial cells was investigated in the subiculum of male 5xFAD/CB2 EGFP/f/f (AD model) and CB2 EGFP/f/f mice by immuno-electron microscopy. The findings revealed that glial CB1 receptors suffer remarkable changes in the AD mouse. Thus, CB1 receptor expression increases in reactive microglia in 5xFAD/CB2 EGFP/f/f , but remains constant in astrocytes with CB1 receptor labeling rising proportionally to the perimeter of the reactive astrocytes. Not least, the CB1 receptor localization in microglial processes in the subiculum of controls and closely surrounding amyloid plaques and dystrophic neurites of the AD model, supports previous suggestions of the presence of the CB1 receptor in microglia. These findings on the correlation between glial reactivity and the CB1 receptor expression in microglial cells and astrocytes, contribute to the understanding of the role of the endocannabinoid system in the pathophysiology of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cannabinoids , Male , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Endocannabinoids/metabolism , Receptors, Cannabinoid/metabolism , Neuroglia/metabolism , Microglia/metabolism , Hippocampus/metabolism , Plaque, Amyloid/metabolism , Disease Models, Animal , Mice, Transgenic
3.
Front Neuroanat ; 16: 1004702, 2022.
Article in English | MEDLINE | ID: mdl-36329829

ABSTRACT

The present study describes a detailed neuroanatomical distribution map of the cannabinoid type 1 (CB1) receptor, along with the biochemical characterization of the expression and functional coupling to their cognate G i/o proteins in the medial prefrontal cortex (mPCx) of the obese Zucker rats. The CB1 receptor density was higher in the prelimbic (PL) and infralimbic (IL) subregions of the mPCx of obese Zucker rats relative to their lean littermates which was associated with a higher percentage of CB1 receptor immunopositive excitatory presynaptic terminals in PL and IL. Also, a higher expression of CB1 receptors and WIN55,212-2-stimulated [35S]GTPγS binding was observed in the mPCx but not in the neocortex (NCx) and hippocampus of obese rats. Low-frequency stimulation in layers II/III of the mPCx induced CB1 receptor-dependent long-term synaptic plasticity in IL of area obese Zucker but not lean rats. Overall, the elevated 2-AG levels, up-regulation of CB1 receptors, and increased agonist-stimulated [35S]GTPγS binding strongly suggest that hyperactivity of the endocannabinoid signaling takes place at the glutamatergic terminals of the mPCx in the obese Zucker rat. These findings could endorse the importance of the CB1 receptors located in the mPCx in the development of obesity in Zucker rats.

4.
Histochem Cell Biol ; 158(6): 561-569, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35852615

ABSTRACT

The cannabinoid CB1 receptor-mediated functions in astrocytes are highly dependent on the CB1 receptor distribution in these glial cells relative to neuronal sites, particularly at the nearby synapses under normal or pathological conditions. However, the portrait of the CB1 receptor distribution in astroglial compartments remains uncompleted because of the scarce CB1 receptor expression in these cells and the limited identification of astrocytes. The glial fibrillary acidic protein (GFAP) is commonly used as astroglial marker. However, because GFAP is a cytoskeleton protein mostly restricted to the astroglial cell bodies and their main branches, it seems not ideal for the localization of CB1 receptor distribution in astrocytes. Therefore, alternative markers to decipher the actual astroglial CB1 receptors are required. In this work, we have compared the glutamate aspartate transporter (GLAST) versus GFAP for the CB1 receptor localization in astrocytes. We found by immunoelectron microscopy that GLAST reveals almost three-fold astroglial area and four-fold astroglial membranes compared to GFAP. In addition, this better visualization of astrocytes was associated with the detection of 12% of the total CB1 receptor labeling in GLAST-positive astrocytes.


Subject(s)
Amino Acid Transport System X-AG , Astrocytes , Glial Fibrillary Acidic Protein , Receptors, Cannabinoid
5.
Front Neuroanat ; 15: 701573, 2021.
Article in English | MEDLINE | ID: mdl-34305539

ABSTRACT

The transient receptor potential vanilloid 1 (TRPV1) participates in synaptic functions in the brain. In the dentate gyrus, post-synaptic TRPV1 in the granule cell (GC) dendritic spines mediates a type of long-term depression (LTD) of the excitatory medial perforant path (MPP) synapses independent of pre-synaptic cannabinoid CB1 receptors. As CB1 receptors also mediate LTD at these synapses, both CB1 and TRPV1 might be influencing the activity of each other acting from opposite synaptic sites. We tested this hypothesis in the MPP-GC synapses of mice lacking TRPV1 (TRPV1-/-). Unlike wild-type (WT) mice, low-frequency stimulation (10 min at 10 Hz) of TRPV1-/- MPP fibers elicited a form of long-term potentiation (LTP) that was dependent on (1) CB1 receptors, (2) the endocannabinoid 2-arachidonoylglycerol (2-AG), (3) rearrangement of actin filaments, and (4) nitric oxide signaling. These functional changes were associated with an increase in the maximum binding efficacy of guanosine-5'-O-(3-[35S]thiotriphosphate) ([35S]GTPγS) stimulated by the CB1 receptor agonist CP 55,940, and a significant decrease in receptor basal activation in the TRPV1-/- hippocampus. Finally, TRPV1-/- hippocampal synaptosomes showed an augmented level of the guanine nucleotide-binding (G) Gαi1, Gαi2, and Gαi3 protein alpha subunits. Altogether, the lack of TRPV1 modifies CB1 receptor signaling in the dentate gyrus and causes the shift from CB1 receptor-mediated LTD to LTP at the MPP-GC synapses.

6.
Neuron ; 109(9): 1513-1526.e11, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33770505

ABSTRACT

Recent advances in neuroscience have positioned brain circuits as key units in controlling behavior, implying that their positive or negative modulation necessarily leads to specific behavioral outcomes. However, emerging evidence suggests that the activation or inhibition of specific brain circuits can actually produce multimodal behavioral outcomes. This study shows that activation of a receptor at different subcellular locations in the same neuronal circuit can determine distinct behaviors. Pharmacological activation of type 1 cannabinoid (CB1) receptors in the striatonigral circuit elicits both antinociception and catalepsy in mice. The decrease in nociception depends on the activation of plasma membrane-residing CB1 receptors (pmCB1), leading to the inhibition of cytosolic PKA activity and substance P release. By contrast, mitochondrial-associated CB1 receptors (mtCB1) located at the same terminals mediate cannabinoid-induced catalepsy through the decrease in intra-mitochondrial PKA-dependent cellular respiration and synaptic transmission. Thus, subcellular-specific CB1 receptor signaling within striatonigral circuits determines multimodal control of behavior.


Subject(s)
Brain/metabolism , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction/physiology , Synaptic Transmission/physiology , Animals , Brain/drug effects , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Catalepsy/chemically induced , Cell Membrane/metabolism , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Nociception/drug effects , Nociception/physiology , Signal Transduction/drug effects , Synaptic Transmission/drug effects
7.
Front Neuroanat ; 15: 645940, 2021.
Article in English | MEDLINE | ID: mdl-33692673

ABSTRACT

The transient receptor potential vanilloid 1 (TRPV1) is a non-selective ligand-gated cation channel involved in synaptic transmission, plasticity, and brain pathology. In the hippocampal dentate gyrus, TRPV1 localizes to dendritic spines and dendrites postsynaptic to excitatory synapses in the molecular layer (ML). At these same synapses, the cannabinoid CB1 receptor (CB1R) activated by exogenous and endogenous cannabinoids localizes to the presynaptic terminals. Hence, as both receptors are activated by endogenous anandamide, co-localize, and mediate long-term depression of the excitatory synaptic transmission at the medial perforant path (MPP) excitatory synapses though by different mechanisms, it is plausible that they might be exerting a reciprocal influence from their opposite synaptic sites. In this anatomical scenario, we tested whether the absence of TRPV1 affects the endocannabinoid system. The results obtained using biochemical techniques and immunoelectron microscopy in a mouse with the genetic deletion of TRPV1 show that the expression and localization of components of the endocannabinoid system, included CB1R, change upon the constitutive absence of TRPV1. Thus, the expression of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) drastically increased in TRPV1-/- whole homogenates. Furthermore, CB1R and MAGL decreased and the cannabinoid receptor interacting protein 1a (CRIP1a) increased in TRPV1-/- synaptosomes. Also, CB1R positive excitatory terminals increased, the number of excitatory terminals decreased, and CB1R particles dropped significantly in inhibitory terminals in the dentate ML of TRPV1-/- mice. In the outer 2/3 ML of the TRPV1-/- mutants, the proportion of CB1R particles decreased in dendrites, and increased in excitatory terminals and astrocytes. In the inner 1/3 ML, the proportion of labeling increased in excitatory terminals, neuronal mitochondria, and dendrites. Altogether, these observations indicate the existence of compensatory changes in the endocannabinoid system upon TRPV1 removal, and endorse the importance of the potential functional adaptations derived from the lack of TRPV1 in the mouse brain.

8.
J Comp Neurol ; 529(9): 2332-2346, 2021 06.
Article in English | MEDLINE | ID: mdl-33368252

ABSTRACT

The use and abuse of cannabis can be associated with significant pathophysiology, however, it remains unclear whether (1) acute administration of Δ-9-tetrahydrocannabinol (THC) during early adulthood alters the cannabinoid type 1 (CB1 ) receptor localization and expression in cells of the brain, and (2) THC produces structural brain changes. Here we use electron microscopy and a highly sensitive pre-embedding immunogold method to examine CB1 receptors in the hippocampus cornu ammonis subfield 1 (CA1) 30 min after male mice were exposed to a single THC injection (5 mg/kg). The findings show that acute exposure to THC can significantly decrease the percentage of CB1 receptor immunopositive terminals making symmetric synapses, mitochondria, and astrocytes. The percentage of CB1 receptor-labeled terminals forming asymmetric synapses was unaffected. Lastly, CB1 receptor expression was significantly lower at terminals of symmetric and asymmetric synapses as well as in mitochondria. Structurally, CA1 dendrites were significantly larger, and contained more spines and mitochondria following acute THC administration. The area of the dendritic spines, synaptic terminals, mitochondria, and astrocytes decreased significantly following acute THC exposure. Altogether, these results indicate that even a single THC exposure can have a significant impact on CB1 receptor expression, and can alter CA1 ultrastructure, within 30 min of drug exposure. These changes may contribute to the behavioral alterations experienced by young individuals shortly after cannabis intoxication.


Subject(s)
CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/ultrastructure , Cannabinoid Receptor Agonists/administration & dosage , Dronabinol/administration & dosage , Receptor, Cannabinoid, CB1/biosynthesis , Receptor, Cannabinoid, CB1/ultrastructure , Age Factors , Animals , CA1 Region, Hippocampal/drug effects , Immunohistochemistry/methods , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, Cannabinoid, CB1/agonists
9.
Learn Mem ; 27(9): 380-389, 2020 09.
Article in English | MEDLINE | ID: mdl-32817304

ABSTRACT

Cannabinoid receptors are widely expressed throughout the hippocampal formation, but are particularly dense in the dentate gyrus (DG) subregion. We, and others, have shown in mice that cannabinoid type 1 receptors (CB1Rs) are involved in a long-term depression (LTD) that can be induced by prolonged 10 Hz stimulation of the medial perforant path (MPP)-granule cell synaptic input to the DG. Here, we extend this work to examine the involvement of CB1Rs in other common forms of LTD in the hippocampus of juvenile male and female Sprague-Dawley rats (Rattus norvegicus). We found, as in mice, that prolonged 10 Hz stimulation (6000 pulses) could reliably induce a form of LTD that was dependent upon CB1R activation. In addition, we also discovered a role for both CB1R and mGluR proteins in LTD induced with 1 Hz low-frequency stimulation (1 Hz-LTD; 900 pulses) and in LTD induced by bath application of the group I mGluR agonist (RS)-3,5-Dihydroxyphenylglycine (DHPG; DHPG-LTD). This study elucidates an essential role for endocannabinoid receptors in a number of forms of LTD in the rat DG, and identifies a novel role for CB1Rs as potential therapeutic targets for conditions that involve impaired LTD in the DG.


Subject(s)
Dentate Gyrus/metabolism , Long-Term Synaptic Depression/physiology , Receptor, Cannabinoid, CB1/physiology , Animals , Electric Stimulation , Female , Male , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/agonists
10.
Nature ; 583(7817): 603-608, 2020 07.
Article in English | MEDLINE | ID: mdl-32641832

ABSTRACT

Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses1-5. By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors5-7. However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism to eventually modulate behavioural responses is unclear. Here we show that activation of mouse astroglial type-1 cannabinoid receptors associated with mitochondrial membranes (mtCB1) hampers the metabolism of glucose and the production of lactate in the brain, resulting in altered neuronal functions and, in turn, impaired behavioural responses in social interaction assays. Specifically, activation of astroglial mtCB1 receptors reduces the phosphorylation of the mitochondrial complex I subunit NDUFS4, which decreases the stability and activity of complex I. This leads to a reduction in the generation of reactive oxygen species by astrocytes and affects the glycolytic production of lactate through the hypoxia-inducible factor 1 pathway, eventually resulting in neuronal redox stress and impairment of behavioural responses in social interaction assays. Genetic and pharmacological correction of each of these effects abolishes the effect of cannabinoid treatment on the observed behaviour. These findings suggest that mtCB1 receptor signalling can directly regulate astroglial glucose metabolism to fine-tune neuronal activity and behaviour in mice.


Subject(s)
Astrocytes/metabolism , Energy Metabolism , Glucose/metabolism , Mitochondria/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Astrocytes/cytology , Astrocytes/drug effects , Cannabinoid Receptor Agonists/pharmacology , Cells, Cultured , Dronabinol/pharmacology , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Energy Metabolism/drug effects , Glycolysis/drug effects , Humans , Hypoxia-Inducible Factor 1/metabolism , Lactic Acid/metabolism , Male , Mice , Mitochondria/drug effects , Mitochondrial Membranes/metabolism , Oxidation-Reduction , Phosphorylation , Reactive Oxygen Species/metabolism , Receptor, Cannabinoid, CB1/agonists , Social Behavior
11.
Curr Biol ; 29(15): 2455-2464.e5, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31327715

ABSTRACT

The retrieval of odor-related memories shapes animal behavior. The anterior piriform cortex (aPC) is the largest part of the olfactory cortex, and it plays important roles in olfactory processing and memory. However, it is still unclear whether specific cellular mechanisms in the aPC control olfactory memory, depending on the appetitive or aversive nature of the stimuli involved. Cannabinoid-type 1 (CB1) receptors are present in the aPC (aPC-CB1), but their potential impact on olfactory memory was never explored. Here, we used a combination of behavioral, genetic, anatomical, and electrophysiological approaches to characterize the functions of aPC-CB1 receptors in the regulation of appetitive and aversive olfactory memory. Pharmacological blockade or genetic deletion of aPC-CB1 receptors specifically impaired the retrieval of conditioned odor preference (COP). Interestingly, expression of conditioned odor aversion (COA) was unaffected by local CB1 receptor blockade, indicating that the role of aPC endocannabinoid signaling is selective for retrieval of appetitive memory. Anatomical investigations revealed that CB1 receptors are highly expressed on aPC GABAergic interneurons, and ex vivo electrophysiological recordings showed that their pharmacological activation reduces miniature inhibitory post-synaptic currents (mIPSCs) onto aPC semilunar (SL), but not pyramidal principal neurons. COP retrieval, but not COA, was associated with a specific CB1-receptor-dependent decrease of mIPSCs in SL cells. Altogether, these data indicate that aPC-CB1 receptor-dependent mechanisms physiologically control the retrieval of olfactory memory, depending on odor valence and engaging modulation of local inhibitory transmission.


Subject(s)
Memory , Olfactory Perception , Piriform Cortex/physiology , Receptor, Cannabinoid, CB1/genetics , Smell , Animals , Male , Mice , Odorants , Receptor, Cannabinoid, CB1/metabolism
12.
Glia ; 66(7): 1417-1431, 2018 07.
Article in English | MEDLINE | ID: mdl-29480581

ABSTRACT

Astroglial type-1 cannabinoid (CB1 ) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so-called tripartite synapse formed by pre- and post-synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock-out mice lacking astroglial CB1 receptor expression specifically in glial fibrillary acidic protein (GFAP)-containing astrocytes (GFAP-CB1 -KO mice) and also generated genetic rescue mice to re-express CB1 receptors exclusively in astrocytes (GFAP-CB1 -RS). To better identify astroglial structures by immunoelectron microscopy, global CB1 knock-out (CB1 -KO) mice and wild-type (CB1 -WT) littermates were intra-hippocampally injected with an adeno-associated virus expressing humanized renilla green fluorescent protein (hrGFP) under the control of human GFAP promoter to generate GFAPhrGFP-CB1 -KO and -WT mice, respectively. Furthermore, double immunogold (for CB1 ) and immunoperoxidase (for GFAP or hrGFP) revealed that CB1 receptors are present in astroglial mitochondria from different hippocampal regions of CB1 -WT, GFAP-CB1 -RS and GFAPhrGFP-CB1 -WT mice. Only non-specific gold particles were detected in mouse hippocampi lacking CB1 receptors. Altogether, we demonstrated the existence of a precise molecular architecture of the CB1 receptor in astrocytes that will have to be taken into account in evaluating the functional activity of cannabinergic signaling at the tripartite synapse.


Subject(s)
Astrocytes/metabolism , Astrocytes/ultrastructure , Hippocampus/metabolism , Hippocampus/ultrastructure , Receptor, Cannabinoid, CB1/metabolism , Animals , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Immunoenzyme Techniques , Mice, Knockout , Microscopy, Immunoelectron , Mitochondria/metabolism , Mitochondria/ultrastructure , Receptor, Cannabinoid, CB1/genetics
13.
J Neurosci ; 37(35): 8385-8398, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28751457

ABSTRACT

The failure to undergo remyelination is a critical impediment to recovery in multiple sclerosis. Chondroitin sulfate proteoglycans (CSPGs) accumulate at demyelinating lesions creating a nonpermissive environment that impairs axon regeneration and remyelination. Here, we reveal a new role for 2-arachidonoylglycerol (2-AG), the major CNS endocannabinoid, in the modulation of CSPGs deposition in a progressive model of multiple sclerosis, the Theiler's murine encephalomyelitis virus-induced demyelinating disease. Treatment with a potent reversible inhibitor of the enzyme monoacylglycerol lipase, which accounts for 85% of the 2-AG degradation in the mouse CNS, modulates neuroinflammation and reduces CSPGs accumulation and astrogliosis around demyelinated lesions in the spinal cord of Theiler's murine encephalomyelitis virus-infected mice. Inhibition of 2-AG hydrolysis augments the number of mature oligodendrocytes and increases MBP, leading to remyelination and functional recovery of mice. Our findings establish a mechanism for 2-AG promotion of remyelination with implications in axonal repair in CNS demyelinating pathologies.SIGNIFICANCE STATEMENT The deposition of chondroitin sulfate proteoglycans contributes to the failure in remyelination associated with multiple sclerosis. Here we unveil a new role for 2-arachidonoylglycerol, the major CNS endocannabinoid, in the modulation of chondroitin sulfate proteoglycan accumulation in Theiler's murine encephalomyelitis virus-induced demyelinating disease. The treatment during the chronic phase with a potent reversible inhibitor of the enzyme monoacylglycerol lipase, which accounts for 85% of the 2-arachidonoylglycerol degradation in the mouse CNS, modulates neuroinflammation and reduces chondroitin sulfate proteoglycan deposition around demyelinated lesions in the spinal cord of Theiler's murine encephalomyelitis virus-infected mice. The increased 2-arachidonoylglycerol tone promotes remyelination in a model of progressive multiple sclerosis ameliorating motor dysfunction.


Subject(s)
Arachidonic Acids/pharmacology , Arachidonic Acids/therapeutic use , Endocannabinoids/pharmacology , Endocannabinoids/therapeutic use , Glycerides/pharmacology , Glycerides/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/physiopathology , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Myelinated/pathology , Proteoglycans/metabolism , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/therapeutic use , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Female , Mice , Multiple Sclerosis/pathology , Neurogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...