Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37242955

ABSTRACT

Melanin is an insoluble, amorphous polymer that forms planar sheets that aggregate naturally to create colloidal particles with several biological functions. Based on this, here, a preformed recombinant melanin (PRM) was utilized as the polymeric raw material to generate recombinant melanin nanoparticles (RMNPs). These nanoparticles were prepared using bottom-up (nanocrystallization-NC, and double emulsion-solvent evaporation-DE) and top-down (high-pressure homogenization-HP) manufacturing approaches. The particle size, Z-potential, identity, stability, morphology, and solid-state properties were evaluated. RMNP biocompatibility was determined in human embryogenic kidney (HEK293) and human epidermal keratinocyte (HEKn) cell lines. RMNPs prepared by NC reached a particle size of 245.9 ± 31.5 nm and a Z-potential of -20.2 ± 1.56 mV; 253.1 ± 30.6 nm and -39.2 ± 0.56 mV compared to that obtained by DE, as well as RMNPs of 302.2 ± 69.9 nm and -38.6 ± 2.25 mV using HP. Spherical and solid nanostructures in the bottom-up approaches were observed; however, they were an irregular shape with a wide size distribution when the HP method was applied. Infrared (IR) spectra showed no changes in the chemical structure of the melanin after the manufacturing process but did exhibit an amorphous crystal rearrangement according to calorimetric and PXRD analysis. All RMNPs presented long stability in an aqueous suspension and resistance to being sterilized by wet steam and ultraviolet (UV) radiation. Finally, cytotoxicity assays showed that RMNPs are safe up to 100 µg/mL. These findings open new possibilities for obtaining melanin nanoparticles with potential applications in drug delivery, tissue engineering, diagnosis, and sun protection, among others.

2.
J Pharm Pharmacol ; 72(9): 1186-1198, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32500554

ABSTRACT

OBJECTIVE: This work describes the vasorelaxant and antihypertensive effects and the mechanism of action on vascular smooth muscle cells of Nibethione, a synthetic thiazolidinedione derivative. Additionally, evidence of its cytotoxicity is assessed. METHODS: Nibethione (NB) was synthesized, and its vasorelaxant effect and mechanism of action were assessed through ex vivo experiments. Molecular docking studies were used to predict the mode of interaction with L-type Ca2+ channel, and in vivo antihypertensive activity was assayed on spontaneously hypertensive rats (SHR). The cytotoxicity potential was evaluated in porcine aortic endothelial cells (PAECs) from primary explants. KEY FINDINGS: Nibethione vasorelaxant effect was efficient on KCl (80 mm) and NE-contraction. This effect was deleteriously modified in the presence of potassium channel block drugs, while the maximal contraction induced with NE was significantly decreased by NB; the CaCl2 -induced contraction was abolished entirely. In vivo experiments showed that NB decreased diastolic blood pressure in 20.3 % after its administration on SHR. The molecular docking showed that NB blocks L-type Ca2+ channel, and in vitro tests showed that NB did not produce cytotoxic activity on PAECs (IC50 >1000 µm). CONCLUSIONS: Nibethione showed in vivo antihypertensive and ex vivo vasorelaxant effects with implication of voltage-dependent L-type Ca2+ channel blocking, and this may contribute to the research of novel antihypertensive drugs.


Subject(s)
Antihypertensive Agents/pharmacology , Hypertension/drug therapy , Vasodilator Agents/pharmacology , Animals , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/toxicity , Aorta/cytology , Aorta/drug effects , Blood Pressure/drug effects , Calcium Channel Blockers/administration & dosage , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Male , Molecular Docking Simulation , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Wistar , Swine , Vasodilator Agents/administration & dosage , Vasodilator Agents/toxicity
3.
J Mater Sci Mater Med ; 29(11): 161, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30357534

ABSTRACT

Segmented polyurethanes were prepared with polycaprolactone diol as soft segment and various amounts of 4,4´-Methylenebis(cyclohexyl isocyanate) and atorvastatin, a statin used for lowering cholesterol, in order to obtain SPU with different content of rigid segments. Polyurethanes with 35% or 50% of rigid segment content were physicochemically characterized and their biocompatibility assessed with L929 fibroblasts. High concentrations of atorvastatin were incorporated by increasing the content of rigid segments as shown by FTIR, Raman, NMR, XPS and EDX. Thermal and mechanical characterization showed that polyurethanes containing atorvastatin and 35% of rigid segments were low modulus (13 MPa) semicrystalline polymers as they exhibited a glass transition temperature (Tg) at -38 °C, melting temperature (Tm) at 46 °C and crystallinity close to 35.9% as determined by DSC. In agreement with this, X-ray diffraction showed reflections at 21.3° and 23.6° for PCL without reflections for atorvastatin suggesting its presence in amorphous form with higher potential bioavailability. Low content of rigid segments led to highly degradable polymer in acidic, alkaline and oxidative media with an acceptable fibroblast cytotoxicity up to 7 days possibly due to low atorvastatin content.


Subject(s)
Atorvastatin/chemistry , Biocompatible Materials/chemistry , Cyanates/chemistry , Polyesters/chemistry , Polyurethanes/chemistry , Animals , Atorvastatin/toxicity , Biocompatible Materials/toxicity , Cell Line , Cell Survival/drug effects , Mice , Molecular Structure , Nonlinear Optical Microscopy , Polyesters/toxicity , Polyurethanes/toxicity , Spectrophotometry, Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...