Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vascular ; 30(2): 392-402, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33813971

ABSTRACT

OBJECTIVES: Swine (Sus Scrofa) are utilized broadly in research settings, given similarities to human vessel size and function; however, there are some important differences for clinicians to understand in order to interpret and perform translational research. This review article uses angiograms acquired in the course of a translational research program to present a description of the functional anatomy of the swine. METHODS: Digital subtraction angiography and computed tomography angiography were obtained throughout the course of multiple studies utilizing power injection with iodinated contrast. Subtracted two-dimensional images and three-dimensional multiplanar reformations were utilized post image acquisition to create maximal intensity projections and three-dimensional renderings of using open-source software (OsiriX). These imaging data are presented along with vessel measurements for reference. RESULTS: An atlas highlighting swine vascular anatomy, with an emphasis on inter-species differences that may influence how studies are conducted and interpreted, was compiled. CONCLUSIONS: Swine are utilized in broad-reaching fields for preclinical research. While many similarities between human and swine vasculature exist, there are important differences to consider when conducting and interpreting research. This review article highlights these differences and presents accompanying images to inform clinicians gaining experience in swine research.


Subject(s)
Contrast Media , Tomography, X-Ray Computed , Angiography, Digital Subtraction/methods , Humans , Imaging, Three-Dimensional/methods , Swine , Tomography, X-Ray Computed/methods
2.
Geroscience ; 42(1): 217-232, 2020 02.
Article in English | MEDLINE | ID: mdl-31776883

ABSTRACT

Mice are among the most widely used translational models of cardiovascular aging and offer a method to quickly assess lifespan changes in a controlled environment. The standard laboratory temperature (20-22 °C), however, imposes a cold stress on mice that causes an increase in sympathetic nervous system-mediated activation of brown adipose tissue (BAT) to maintain a core body temperature of 36-37 °C. Thus, while physiologic data obtained recapitulate human physiology to a certain degree, interpretations of previous research in mice may have been contaminated by a cold stress, due to housing mice below their thermoneutral zone (30 °C). The purpose of this investigation was to examine how chronic sympathetic stimulation evoked by acclimation to 20 °C might obscure interpretation of changes in autonomic modulation of heart rate (HR) and heart rate variability (HRV) that accompany advancing age. HR and HRV before and after administration of a dual-autonomic blockade were measured via in-vivo ECG in young (3 months) and aged (30 months) male C57BL/6 telemetry-implanted mice following temperature acclimation for 3 days at 30 °C or 20 °C. Mean basal and intrinsic HR of both young and aged mice became markedly reduced at 30 °C compared to 20 °C. In both age groups, HRV parameters in time, frequency, and non-linear domains displayed increased variability at 30 °C compared to 20 °C under basal conditions. Importantly, age-associated declines in HRV observed at 20 °C were ameliorated when mice were studied at their thermoneutral ambient temperature of 30 °C. Thus, an accurate understanding of autonomic modulation of cardiovascular functions in mice of advanced age requires that they are housed in a metabolically neutral environment.


Subject(s)
Acclimatization , Adipose Tissue, Brown , Animals , Body Temperature Regulation , Heart Rate , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...