Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(9): e0222775, 2019.
Article in English | MEDLINE | ID: mdl-31568502

ABSTRACT

Compounds belonging to the group of 5-substituted 4-(1,3,4-thiadiazol-2-yl) benzene-1,3-diols exhibit a broad spectrum of biological activity, including antibacterial, antifungal, and anticancer properties. The mechanism of the antifungal activity of compounds from this group has not been described to date. Among the large group of 5-substituted 4-(1,3,4-thiadiazol-2-yl) benzene-1,3-diol derivatives, the compound 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol, abbreviated as C1, was revealed to be one of the most active agents against pathogenic fungi, simultaneously with the lowest toxicity to human cells. The C1 compound is a potent antifungal agent against different Candida species, including isolates resistant to azoles, and molds, with MIC100 values ranging from 8 to 96 µg/ml. The antifungal activity of the C1 compound involves disruption of the cell wall biogenesis, as evidenced by the inability of cells treated with C1 to maintain their characteristic cell shape, increase in size, form giant cells and flocculate. C1-treated cells were also unable to withstand internal turgor pressure causing protoplast material to leak out, exhibited reduced osmotic resistance and formed buds that were not covered with chitin. Disturbances in the chitin septum in the neck region of budding cells was observed, as well as an uneven distribution of chitin and ß(1→3) glucan, and increased sensitivity to substances interacting with wall polymerization. The ATR-FTIR spectral shifts in cell walls extracted from C. albicans cells treated with the C1 compound suggested weakened interactions between the molecules of ß(1→3) glucans and ß(1→6) glucans, which may be the cause of impaired cell wall integrity. Significant spectral changes in the C1-treated cells were also observed in bands characteristic for chitin. The C1 compound did not affect the ergosterol content in Candida cells. Given the low cytotoxicity of the C1 compound to normal human dermal fibroblasts (NHDF), it is possible to use this compound as a therapeutic agent in the treatment of surface and gastrointestinal tract mycoses.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida glabrata/drug effects , Candida parapsilosis/drug effects , Thiadiazoles/pharmacology , Antifungal Agents/chemical synthesis , Aspergillus niger/chemistry , Aspergillus niger/drug effects , Aspergillus niger/isolation & purification , Aspergillus niger/ultrastructure , Candida albicans/chemistry , Candida albicans/isolation & purification , Candida albicans/ultrastructure , Candida glabrata/chemistry , Candida glabrata/isolation & purification , Candida glabrata/ultrastructure , Candida parapsilosis/chemistry , Candida parapsilosis/isolation & purification , Candida parapsilosis/ultrastructure , Candida tropicalis/chemistry , Candida tropicalis/drug effects , Candida tropicalis/isolation & purification , Candida tropicalis/ultrastructure , Candidiasis/microbiology , Cell Line , Cell Survival/drug effects , Cell Wall/chemistry , Cell Wall/drug effects , Cell Wall/ultrastructure , Chitin/antagonists & inhibitors , Chitin/chemistry , Chitin/metabolism , Drug Resistance, Fungal/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Glucans/antagonists & inhibitors , Glucans/chemistry , Glucans/metabolism , Humans , Microbial Sensitivity Tests , Rhodotorula/chemistry , Rhodotorula/drug effects , Rhodotorula/isolation & purification , Rhodotorula/ultrastructure , Thiadiazoles/chemical synthesis , Trichophyton/chemistry , Trichophyton/drug effects , Trichophyton/isolation & purification , Trichophyton/ultrastructure
2.
Sci Rep ; 9(1): 12945, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506532

ABSTRACT

Amphotericin B (AmB) is a very potent antifungal drug with very rare resistance among clinical isolates. Treatment with the AmB formulations available currently is associated with severe side effects. A promising strategy to minimize the toxicity of AmB is reducing its dose by combination therapy with other antifungals, showing synergistic interactions. Therefore, substances that display synergistic interactions with AmB are still being searched for. Screening tests carried out on several dozen of synthetic 1,3,4-thiadiazole derivatives allowed selection of a compound called 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol (abbreviated as C1), which shows strong synergistic interaction with AmB and low toxicity towards human cells. The aim of the present study was to investigate the type of in vitro antifungal interactions of the C1 compound with AmB against fungal clinical isolates differing in susceptibility. The results presented in the present paper indicate that the C1 derivative shows strong synergistic interaction with AmB, which allows the use of a dozen to several dozen times lower AmB concentration necessary for 100% inhibition of the growth of pathogenic fungi in vitro. Synergistic interactions were noted for all tested strains, including strains with reduced sensitivity to AmB and azole-resistant isolates. These observations give hope for the possibility of application of the AmB - C1 combinatory therapy in the treatment of fungal infections.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Drug Synergism , Fungi/drug effects , Mycoses/drug therapy , Thiadiazoles/pharmacology , Humans , Mycoses/microbiology , Mycoses/pathology , Thiadiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...