Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 12(16): 10482-10498, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36033370

ABSTRACT

The ethanol surface reaction over CeO2 nanooctahedra (NO) and nanocubes (NC), which mainly expose (111) and (100) surfaces, respectively, was studied by means of infrared spectroscopy (TPSR-IR), mass spectrometry (TPSR-MS), and density functional theory (DFT) calculations. TPSR-MS results show that the production of H2 is 2.4 times higher on CeO2-NC than on CeO2-NO, which is rationalized starting from the different types of adsorbed ethoxy species controlled by the shape of the ceria particles. Over the CeO2(111) surface, monodentate type I and II ethoxy species with the alkyl chain perpendicular or parallel to the surface, respectively, were identified. Meanwhile, on the CeO2(100) surface, bidentate and monodentate type III ethoxy species on the checkerboard O-terminated surface and on a pyramid of the reconstructed (100) surface, respectively, are found. The more labile surface ethoxy species on each ceria nanoshape, which are the monodentate type I or III ethoxy on CeO2-NO and CeO2-NC, respectively, react on the surface to give acetate species that decompose to CO2 and CH4, while H2 is formed via the recombination of hydroxyl species. In addition, the more stable monodentate type II and bidentate ethoxy species on CeO2-NO and CeO2-NC, respectively, give an ethylenedioxy intermediate, the binding of which is facet-dependent. On the (111) facet, the less strongly bound ethylenedioxy desorbs as ethylene, whereas on the (100) facet, the more strongly bound intermediate also produces CO2 and H2 via formate species. Thus, on the (100) facet, an additional pathway toward H2 formation is found. ESR activity measurements show an enhanced H2 production on the nanocubes.

2.
Phys Chem Chem Phys ; 17(12): 8097-105, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25729784

ABSTRACT

We present, for the first time in the literature, a systematic study of the molecular structure of the Wells-Dawson heteropolyacid H6P2W18O62·24H2O (HPA) dispersed on TiO2, SiO2, ZrO2 and Al2O3. The heteropolyacid-based materials were synthesized through a conventional impregnation method (in aqueous and ethanol media) at a loading that corresponds to the theoretical "monolayer" coverage (dispersion limit loading). The combination of Raman and infrared studies demonstrates the presence of crystals of HPA (regardless of the nature of the medium used during the synthesis) suggesting that the dispersion limit loading was greatly exceeded. In situ temperature programmed spectroscopy analyses demonstrated that the Raman shift of the distinctive W[double bond, length as m-dash]O Raman mode of the phosphotungstic Wells-Dawson heteropolyacid is sensitive to the local environment, that is, the amount of water molecules associated with the structure. Moreover, the aqueous based species associated with such structures are recognizable through infrared spectroscopy.

3.
J Phys Chem B ; 110(24): 11847-53, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-16800487

ABSTRACT

Methanol adsorption on beta-Ga2O3 surface has been studied by Fourier transform infrared spectroscopy (FTIR) and by means of density functional theory (DFT) cluster model calculations. Adsorption sites of tetrahedral and octahedral gallium ions with different numbers of oxygen vacancies have been compared. The electronic properties of the adsorbed molecules have been monitored by computing adsorption energies, optimized geometry parameters, overlap populations, atomic charges, and vibrational frequencies. The gallia-methanol interaction has different behaviors according to the local surface chemical composition. The calculations show that methanol can react in three different ways with the gallia surface giving rise to a nondissociative adsorption, a dissociative adsorption, and an oxidative decomposition. The surface without oxygen vacancies is very reactive and produces the methanol molecule decomposition. The molecule is nondissociatively adsorbed by means of a hydrogen bond between the alcoholic hydrogen atom and a surface oxygen atom and a bond between the alcoholic oxygen atom and a surface gallium atom. Two neighbor oxygen vacancies on tetrahedral gallium sites produce the dissociation of the methanol molecule and the formation of a bridge bond between two surface gallium atoms and the methoxy group.

4.
J Phys Chem B ; 110(11): 5498-507, 2006 Mar 23.
Article in English | MEDLINE | ID: mdl-16539489

ABSTRACT

The adsorption of CO(2) over a set of gallium (III) oxide polymorphs with different crystallographic phases (alpha, beta, and gamma) and surface areas (12-105 m(2) g(-1)) was studied by in situ infrared spectroscopy. On the bare surface of the activated gallias (i.e., partially dehydroxylated under O(2) and D(2) (H(2)) at 723 K), several IR signals of the O-D (O-H) stretching mode were assigned to mono-, di- and tricoordinated OD (OH) groups bonded to gallium cations in tetrahedral and/or octahedral positions. After exposing the surface of the polymorphs to CO(2) at 323 K, a variety of (bi)carbonate species emerged. The more basic hydroxyl groups were able to react with CO(2), to yield two types of bicarbonate species: mono- (m-) and bidentate (b-) [nu(as)(CO(3)) = 1630 cm(-1); nu(s)(CO(3)) = 1431 or 1455 cm(-1) (for m- or b-); delta(OH) = 1225 cm(-1)]. Together with the bicarbonate groups, IR bands assigned to carboxylate [nu(as)(CO(2)) = 1750 cm(-1); nu(s)(CO(2)) = 1170 cm(-1)], bridge carbonate [nu(as)(CO(3)) = 1680 cm(-1); nu(s)(CO(3)) = 1280 cm(-1)], bidentate carbonate [nu(as)(CO(3)) = 1587 cm(-1); nu(s)(CO(3)) = 1325 cm(-1)], and polydentate carbonate [nu(as)(CO(3)) = 1460 cm(-1); nu(s)(CO(3)) = 1406 cm(-1)] species developed, up to approximately 600 Torr of CO(2). However, only the bi- and polydentate carbonate groups still remained on the surface upon outgassing the samples at 323 K. The total amount of adsorbed CO(2), measured by volumetric adsorption (323 K), was approximately 2.0 micromol m(-2) over any of the polymorphs, congruent with an integrated absorbance of (bi)carbonate species proportional to the surface area of the materials. Upon heating under flowing CO(2) (760 Torr), most of the (bi)carbonate species vanished a T > 550 K, but polydentate groups remained on the surface up to the highest temperature used (723 K). A thorough discussion of the more probable surface sites involved in the adsorption of CO(2) is made.

5.
Langmuir ; 21(3): 962-70, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15667175

ABSTRACT

The chemisorption of H(2) over a set of gallia polymorphs (alpha-, beta-, and gamma-Ga(2)O(3)) has been studied by temperature-programmed adsorption equilibrium and desorption (TPA and TPD, respectively) experiments, using in situ transmission infrared spectroscopy. Upon heating the gallium oxides above 500 K in 101.3 kPa of H(2), two overlapped infrared signals developed. The 2003- and 1980-cm(-1) bands were assigned to the stretching frequencies of H bonded to coordinatively unsaturated (cus) gallium cations in tetrahedral and octahedral positions [nu(Ga(t)-H) and nu(Ga(o)-H), respectively]. Irrespective to the gallium cation geometrical environment, (i) a linear relationship between the integrated intensity of the whole nu(Ga-H) infrared band versus the Brunauer-Emmett-Teller surface area of the gallia was found and (ii) TPA and TPD results revealed that molecular hydrogen is dissociatively chemisorbed on any bulk gallium oxide polymorph following two reaction pathways. An endothermal, homolytic dissociation occurs over surface cus-gallium sites at T > 450 K, giving rise to Ga-H(I) bonds. The heat and entropy of this type I hydrogen adsorption were determined by the Langmuir's adsorption model as Deltah(I) = 155 +/- 25 kJ mol(-1) and Deltas(I) = 0.27 +/- 0.11 kJ mol(-1) K(-1). In addition, another exothermic, heterolytic adsorption sets in already in the low-temperature region. This type of hydrogen chemisorption involves surface Ga-O-Ga species, originating GaO-H and Ga-H(II) bonds which can only be removed from the gallia surface after heating under evacuation at T > 650 K. The measured desorption energy of this last, second-order process was equal to 77 +/- 10 kJ mol(-1). The potential of the H(2) chemisorption as a tool to measure or estimate the specific surface area of gallia and to discern the nature and proportion of gallium cation coordination sites on the surface of bulk gallium oxides is also analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL
...