Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 85(6): 1701-1719, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35358066

ABSTRACT

Safe drinking water is a necessity for every human being, but clean water is scarce and not easily available due to natural geochemical factors or industrial pollutant activity. Many issues involving water quality could be greatly improved using clays as adsorbents. We highlight for the first time, the uptake of fluoride from natural water by Laponite, synthetic hectorite clay, in raw and modified state. A series of batch adsorption experiments were carried out to evaluate the adsorption potential of the different parameters. The optimized parameters were: contact time, adsorbent dose and pH. It was found that fluoride uptake from natural water was better using raw Laponite and inorganic-modified Laponite than using organic-modified Laponite clays. Adsorbents were characterized before and after fluoride adsorption by X-ray diffraction, X-ray fluorescence, FTIR, thermo gravimetric analyses and 19F solid state NMR spectroscopy. The experimental data showed that both Langmuir and Freundlich models fitted an adsorption isotherm well. Thermodynamic parameters such as Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were calculated. These parameters indicated that fluoride adsorption onto Laponite was nonspontaneous and endothermic in temperature range between 25 and 45 °C.


Subject(s)
Fluorides , Adsorption , Clay , Humans , Silicates , Thermodynamics
2.
Saudi Pharm J ; 28(1): 15-24, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31920429

ABSTRACT

Albendazole (ABZ, anti-parasitic active pharmaceutical ingredient) is a crystalline low water-soluble drug, thus the dissolution rate in gastrointestinal fluids is limited. Consequently, the improvement of the water solubility and dissolution rate of ABZ implies a great challenge for a more efficient treatment of hydatidosis. In this context, SBA-15 and SBA-16 ordered mesoporous silica materials were synthetized and loaded with ABZ. X-ray diffraction, FT-IR spectroscopy, nitrogen physisorption manometry, particle size distribution and scanning electronic microscopy were used to characterize unloaded and loaded materials (ABZ/SBA-15 and ABZ/SBA-16). The loaded ABZ amount in the carriers was estimated by elemental analysis. For the loaded materials, the drug solubility and release profile were evaluated. In addition, mathematical models were compared to explain the dissolution kinetics of ABZ from mesoporous solids. ABZ was successfully loaded into the mesopores. The amorphous state of the adsorbed ABZ was confirmed by differential scanning calorimetry that resulted in a notable increment in the dissolution rate compared to crystalline ABZ. Drug release behaviors were well simulated by the Weibull model for ABZ/SBA-15 and by the Gompertz function for pure ABZ and ABZ/SBA-16. The SBA-15 carrier exhibited the highest drug loading and dissolution rate becoming a promising material to improve ABZ bioavailability.

3.
RSC Adv ; 10(44): 26165-26176, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-35519781

ABSTRACT

Here, combining the evaporation-induced self-assembly (EISA) method and the liquid crystal templating pathway, mesostructured amorphous zirconium oxides have been prepared by a soft templating method without addition of any heteroelement to stabilize the mesopore framework. The recovered materials have been characterized by SAXS measurements, nitrogen adsorption-desorption analysis and X-ray diffraction (XRD). The obtained mesostructured zirconia exhibits a high thermal stability. An in situ XRD study performed as a function of temperature shows that the amorphous ZrO2, obtained after removal of the pore templating agent (pluronic P123), begins to crystallize in air from 420 °C. Amorphous mesostructured ZrO2 also presents a high hydrothermal stability; these materials are not degraded after 72 hours in boiling water.

4.
ACS Appl Mater Interfaces ; 9(3): 3113-3122, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28032502

ABSTRACT

The one pot synthesis of dual mesoporous titania (2.3 and 7.7 nm) has been achieved from a mixture of fluorinated and Pluronic surfactants. The small and large mesopore networks are templated, respectively, by a fluorinated-rich liquid crystal and a Pluronic-rich liquid crystal, which are in equilibrium. After calcination at 350 °C, the amorphous walls are transformed into semicrystalline anatase preserving the mesoporous structure. Results concerning the photodegradation of methyl orange using the calcined photocatalysts highlight that the kinetic rate constant (k) determined for the dual mesoporous titania is 2.6 times higher than the k value obtained for the monomodal ones.

5.
Chem Soc Rev ; 42(9): 4217-55, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23407854

ABSTRACT

Characterized by a regular porosity in terms of pore size and pore network arrangement, ordered mesoporous solids have attracted increasing interest in the last two decades. These materials have been identified as potential candidates for several applications. However, more environmentally friendly and economical synthesis routes of mesoporous silica materials were found to be necessary in order to develop these applications on an industrial scale. Consequently, ecodesign of ordered mesoporous silica has been considerably developed with the objective of optimizing the chemistry and the processing aspects of the material synthesis. In this review, the main strategies developed with this aim are presented and discussed.

6.
J Hazard Mater ; 201-202: 107-14, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22169242

ABSTRACT

The ability of various as-prepared and organically modified MCM-41 and HMS mesoporous silica materials to behave as efficient adsorbents for organic pollutants in aqueous solution was investigated by using different surface functionalization procedures, so as to adjust their hydrophilic/hydrophobic balance. The hydrophilic and organophilic properties of the parent silica materials and their corresponding surface functionalized counterparts were studied by using water and toluene adsorption isotherms. Their quantification was determined by the hydrophobic static index value (HI(static)), as well as by the silanol and organic group densities after the functionalization step. A clear correlation could be found between the HI(static) values and either the superficial silanol density, or the amount of organic moieties grafted or incorporated to the silica materials. For the highly organically functionalized samples, the residual superficial silanol groups (<50%) are sufficiently isolated from each other so as to prevent the water capillary condensation within the pores, thereby leading to an increased hydrophobic character of the resulting mesoporous silica. Those hydrophobic samples, for which the water liquid meniscus formation within the mesopores was minimized or avoided, exhibited a storage capacity for an organic pollutant (N,N-diethyl-m-toluamide, DEET) in aqueous solution more than 20 times higher than that of the corresponding unmodified sample, independently of the silica nature (MCM-41 or HMS). For all calcined and silylated samples, the DEET maximum adsorption capacities determined by the Langmuir model could be correlated with the silica surface coverage by trimethylsilyl groups and thus with the remaining silanol amount.


Subject(s)
DEET/isolation & purification , Silicon Dioxide/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Chromatography, High Pressure Liquid , Differential Thermal Analysis , Hydrophobic and Hydrophilic Interactions , Porosity , Surface Properties , X-Ray Diffraction
7.
Chem Commun (Camb) ; 47(5): 1509-11, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21085735

ABSTRACT

A simple and efficient route to prepare supported nanocrystalline oxides is presented. The synthesis procedure, i.e. in situ autocombustion of a glycine complex, allows the production of nanocrystals in a porous matrix presenting larger pore size. An example of successful formation of 2-5 nm nanocrystals is given for a single oxide (Fe(2)O(3)), a mixed-oxide structure (LaCoO(3) perovskite-type) and a nickel-doped oxide.

8.
Chem Commun (Camb) ; (37): 4504-6, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18802605

ABSTRACT

This work reports the synthesis of homogeneously dispersed mixed-oxide nanoparticles (<5 nm) exhibiting improved lattice oxygen mobility (ca. two times higher than on bulk samples), using a novel synthesis procedure of nanocasting in mesoporous silica host support.

SELECTION OF CITATIONS
SEARCH DETAIL
...