Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 239: 806-815, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28873638

ABSTRACT

Two fresh (fresh cubic pieces, fresh puree) and two dried (dried cubic pieces, dried powder) products were prepared from a homogenous mango fruit batch to obtain four samples differing in texture. The aromatic profiles were determined by SAFE extraction technique and GC-MS analysis. VOCs released during consumption were trapped by a retronasal aroma-trapping device (RATD) and analysed by GC-MS. Twenty-one terpenes and one ester were identified from the exhaled nose-space. They were amongst the major mango volatile compounds, 10 of which were already reported as being potential key flavour compounds in mango. The in vivo release of aroma compounds was affected by the matrix texture. The intact samples (fresh and dried cubic pieces) released significantly more aroma compounds than disintegrated samples (fresh puree, dried powder). The sensory descriptive analysis findings were in close agreement with the in vivo aroma release data regarding fresh products, in contrast to the dried products.


Subject(s)
Mangifera , Flavoring Agents , Fruit , Gas Chromatography-Mass Spectrometry
2.
J Enzyme Inhib Med Chem ; 28(2): 397-401, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22299576

ABSTRACT

Reaction of 6-/7-hydroxycoumarin with metronidazole afforded conjugates which incorporate two interesting chemotypes which may inhibit carbonic anhydrases (CAs, EC 4.2.1.1) due to the presence of the coumarin moiety and possess radiosensitizing effects due to the presence of the nitroazole. Another dual action compound, which may act both as CA inhibitor as well as monocarboxylate transporter inhibitor, is 3-cyano-7-hydroxy-coumarin. These compounds have been investigated as inhibitors of 11 human CA isoforms. Submicromolar inhibition was observed against hCA VA, hCA VB, hCA VI, hCA VII, hCA IX, hCA XII and hCA XIV, whereas isoforms hCA I, II and XIII were not inhibited by these compounds. These coumarins thus act as isoform-selective CA inhibitors with the possibility to target isoforms involved in pathologies such as obesity (CA VA/VB) or cancer (CA IX and XII) without inhibiting the physiologically dominant, highly abundant hCA I and II.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Coumarins/pharmacology , Metronidazole/pharmacology , Biocatalysis , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Coumarins/chemical synthesis , Coumarins/chemistry , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Humans , Metronidazole/chemical synthesis , Metronidazole/chemistry , Molecular Structure , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...