Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Opt Lett ; 44(5): 1277-1280, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30821767

ABSTRACT

Photonic integrated circuits represent a promising platform for applying quantum information science to areas such as quantum computation, quantum communication, and quantum metrology. While the linear optical approach has greatly contributed to this field, it is often possible to improve the functionality and scalability by making use of nonlinear processes. One interesting phenomenon is the interference between two nonlinear optical processes, where the interference occurs by removing the information as to which of two processes have occurred. In this Letter, we demonstrate a nonlinear interferometer in the pair-photon generation regime by using spontaneous four-wave mixing in an integrated silicon photonic chip. We observe a nonlinear interference in the production rate of photon pairs generated from two different four-wave mixing waveguides. We obtain an interference visibility of 96.8%. This work shows the possibility of integrating and controlling nonlinear-optical-interference components for silicon quantum photonics.

2.
Opt Express ; 26(16): 20379-20395, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119349

ABSTRACT

High visibility on-chip quantum interference among indistinguishable single-photons from multiples sources is a key prerequisite for integrated linear optical quantum computing. Resonant enhancement in micro-ring resonators naturally enables brighter, purer and more indistinguishable single-photon production without any tight spectral filtering. The indistinguisha-bility of heralded single-photons from multiple micro-ring resonators has not been measured in any photonic platform. Here, we report on-chip indistinguishability measurements of heralded single-photons generated from independent micro-ring resonators by using an on-chip Mach-Zehnder interferometer and spectral demultiplexer. We measured the raw heralded two-photon interference fringe visibility as 72 ± 3%. This result agrees with our model, which includes device imperfections, spectral impurity and multi-pair emissions. We identify multi-pair emissions as the main factor limiting the nonclassical interference visibility, and show a route towards achieving near unity visibility in future experiments.

3.
Science ; 360(6386): 285-291, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29519918

ABSTRACT

The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies.

4.
Sci Adv ; 4(1): eaap9646, 2018 01.
Article in English | MEDLINE | ID: mdl-29387796

ABSTRACT

The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. We introduce the concept of an "eigenstate witness" and, through it, provide a new quantum approach that combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32 bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress toward quantum chemistry on quantum computers.

5.
Opt Lett ; 42(4): 815-818, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28198872

ABSTRACT

We present the generation of quantum-correlated photon pairs and subsequent pump rejection across two silicon-on-insulator photonic integrated circuits. Incoherently cascaded lattice filters are used to provide over 100 dB pass-band to stop-band contrast with no additional external filtering. Photon pairs generated in a microring resonator are successfully separated from the input pump, confirmed by temporal correlations measurements.

6.
Sci Rep ; 6: 38908, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27996014

ABSTRACT

We generate photon pairs in a-Si:H microrings using a CW pump, and find the Kerr coefficient of a-Si:H to be 3.73 ± 0.25 × 10-17m2/W. By measuring the Q factor with coupled power we find that the loss in the a-Si:H micro-rings scales linearly with power, and therefore cannot originate from two photon absorption. Theoretically comparing a-Si:H and c-Si micro-ring pair sources, we show that the high Kerr coefficient of this sample of a-Si:H is best utilized for microrings with Q factors below 103, but that for higher Q factor devices the photon pair rate is greatly suppressed due to the first order loss.

7.
Opt Express ; 24(8): 8797-808, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27137314

ABSTRACT

In this work we report on a single photon detector system which offers near-unity detection efficiency using waveguide-coupled superconducting nanowires with lengths on the order of 1 µm. This is achieved by embedding the nanowires in a racetrack resonator where the interaction time with the photons trapped in the cavity is increased, thereby allowing for shorter nanowires. We expect this to lead to a higher fabrication yield as the amount of inhomogeneities decreases for shorter nanowires. Our simulations show a system with a 1 µm long superconducting nanowire single photon detector (SNSPD) operating at near-unity detection efficiency using design parameters that can be realistically achieved with conventional fabrication processes. The resonant cavity introduces spectral selectivity to the otherwise broad-band SNSPDs and the cavity induced timing jitter is shown to be insignificant for SNSPDs longer than 1 µm.

8.
J Pharm Sci ; 105(9): 2864-2872, 2016 09.
Article in English | MEDLINE | ID: mdl-27112289

ABSTRACT

The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at multiple laboratories using the same experimental protocol. Dissolution was studied in fasted-state simulated intestinal fluid and phosphate buffer (pH 6.5). An additional 6 compounds were used for the development of an IDR measurement guide, which was then validated with 5 compounds. The results clearly showed a need for a standardized protocol including both the experimental assay and the data analysis. Standardization at both these levels decreased the interlaboratory variability. The results also illustrated the difficulties in performing disc IDR on poorly water-soluble drugs because the concentrations reached are typically below the limit of detection. The following guidelines were established: for compounds with Sapp >1 mg/mL, the disc method is recommended. For compounds with Sapp <100 µg/mL, IDR is recommended to be performed using powder dissolution. Compounds in the interval 100 µg/mL to 1 mg/mL can be analyzed with either of these methods.


Subject(s)
Chemistry, Pharmaceutical/methods , Chemistry, Pharmaceutical/standards , Solubility , Algorithms , Body Fluids/chemistry , Buffers , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Kinetics , Powders , Reproducibility of Results , X-Ray Diffraction
9.
Opt Express ; 21(23): 27826-34, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514299

ABSTRACT

Photon sources are fundamental components for any quantum photonic technology. The ability to generate high count-rate and low-noise correlated photon pairs via spontaneous parametric down-conversion using bulk crystals has been the cornerstone of modern quantum optics. However, future practical quantum technologies will require a scalable integration approach, and waveguide-based photon sources with high-count rate and low-noise characteristics will be an essential part of chip-based quantum technologies. Here, we demonstrate photon pair generation through spontaneous four-wave mixing in a silicon micro-ring resonator, reporting separately a maximum coincidence-to-accidental (CAR) ratio of 602 ± 37 (for a generation rate of 827kHz), and a maximum photon pair generation rate of 123 MHz ± 11 kHz (with a CAR value of 37). To overcome free-carrier related performance degradations we have investigated reverse biased p-i-n structures, demonstrating an improvement in the pair generation rate by a factor of up to 2 with negligible impact on CAR.

10.
Phys Rev Lett ; 108(5): 053601, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22400933

ABSTRACT

We demonstrate fast polarization and path control of photons at 1550 nm in lithium niobate waveguide devices using the electro-optic effect. We show heralded single photon state engineering, quantum interference, fast state preparation of two entangled photons, and feedback control of quantum interference. These results point the way to a single platform that will enable the integration of nonlinear single photon sources and fast reconfigurable circuits for future photonic quantum information science and technology.

11.
J Clin Pharmacol ; 52(10): 1506-15, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22128201

ABSTRACT

Clopidogrel requires CYP450-mediated hepatic metabolism to form its active metabolite (clopi-H4). This randomized, placebo-controlled, crossover study was designed to characterize the effect of a high-fat or standard breakfast on adenosine diphosphate (ADP)-induced platelet aggregation and exposure to unchanged clopidogrel and clopi-H4 following clopidogrel (300-mg loading dose, 75 mg/d for 4 days) in 72 healthy men. At day 5 and as assessed by liquid chromatography-tandem mass spectrometry, unchanged clopidogrel area under the concentration- time curve from 0 to 24 hours (AUC(0-24)) increased 3.32-fold (90% confidence interval [CI], 2.88-3.84), and clopi-H4 AUC(0-24) decreased nonsignificantly by 12% (90% CI, 0.82-0.94) upon administration of clopidogrel with a standard breakfast. The estimated treatment difference in maximum platelet aggregation (MPA) induced by ADP 5 µM and assessed by light transmission aggregometry was 4.7%, with the 90% CI (0.9%-8.5%) contained within the prespecified equipotency range of ±15%. The mean ± standard deviation of day 5 inhibition of platelet aggregation was 49.7% ± 17.2% and 54.0% ± 13.3% in the fed and fasted states, respectively. Despite increased unchanged clopidogrel and slightly decreased clopi-H4 exposure following clopidogrel administration, the numerical increase in MPA in the fed versus fasted state was small and within the prespecified limit of equipotency. These findings confirm that clopidogrel can be taken with or without food.


Subject(s)
Food-Drug Interactions , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation/drug effects , Ticlopidine/analogs & derivatives , Adenosine Diphosphate , Adult , Area Under Curve , Aryl Hydrocarbon Hydroxylases/genetics , Breakfast , Clopidogrel , Cross-Over Studies , Cytochrome P-450 CYP2C19 , Diet, High-Fat , Genotype , Humans , Male , Platelet Aggregation Inhibitors/blood , Platelet Aggregation Inhibitors/pharmacokinetics , Ticlopidine/administration & dosage , Ticlopidine/blood , Ticlopidine/pharmacokinetics , Young Adult
12.
Phys Rev Lett ; 107(16): 163602, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22107381

ABSTRACT

Generating quantum entanglement is not only an important scientific endeavor, but will be essential to realizing quantum-enhanced technologies, in particular, quantum-enhanced measurements with precision beyond classical limits. We investigate the heralded generation of multiphoton entanglement for quantum metrology using a reconfigurable integrated waveguide device in which projective measurement of auxiliary photons heralds the generation of path-entangled states. We use four and six-photon inputs, to analyze the heralding process of two- and four-photon NOON states-a superposition of N photons in two paths, capable of enabling phase supersensitive measurements at the Heisenberg limit. Realistic devices will include imperfections; as part of the heralded state preparation, we demonstrate phase superresolution within our chip with a state that is more robust to photon loss.

SELECTION OF CITATIONS
SEARCH DETAIL
...