Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35052516

ABSTRACT

Animal models for complex diseases are needed to position and analyze the function of interacting genes. Previous positional cloning identified Ncf1 and Clec4b to be major regulators of arthritis models in rats. Here, we investigate epistasis between Ncf1 and Clec4b, two major regulators of arthritis in rats. We find that Clec4b and Ncf1 exert an additive effect on arthritis given by their joint ability to regulate neutrophils. Both genes are highly expressed in neutrophils, together regulating neutrophil availability and their capacity to generate reactive oxygen species. Using a glycan array, we identify key ligands of Clec4b and demonstrate that Clec4b-specific stimulation triggers neutrophils into oxidative burst. Our observations highlight Clec4b as an important regulator of neutrophils and demonstrate how epistatic interactions affect the susceptibility to, and severity of, autoimmune arthritis.

2.
Am J Clin Dermatol ; 17(4): 369-85, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27164914

ABSTRACT

Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. One of the most important benefits, which puts them in the spotlight of current studies, is their antitumor profile. Some of these polyphenolic compounds have already presented promising results in either in vitro or in vivo studies for non-melanoma skin cancer and melanoma. These compounds act on several biomolecular pathways including cell division cycle arrest, autophagy, and apoptosis. Indeed, such natural compounds may be of potential for both preventive and therapeutic fields of cancer. This review evaluates the existing scientific literature in order to provide support for new research opportunities using polyphenolic compounds in oncodermatology.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Polyphenols/therapeutic use , Skin Neoplasms/drug therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...